martes, 21 de enero de 2014

Matemáticas y Juegos de azar ¿Que es la probabilidad?

¿Qué es la probabilidad?
Sea lo que sea, no es algo que se pueda ignorar. Un seguro de vida, de vivienda o de
automóvil dependen de una probabilidad que los asegurados tendrán que asumir, y
pagar. ¿Tiene usted que vacunarse contra la gripe este invierno? Deberá empezar
contraponiendo el riesgo de efectos secundarios o de una posible reacción a las
consecuencias derivadas de no vacunarse. Los miembros de un jurado sólo pueden
condenar a un acusado cuando “no hay ninguna duda razonable” de su culpabilidad.
En el sistema judicial, uno de los criterios más adecuados puede basarse en un
“balance de probabilidades”. Una persona decide comprar, o no, participaciones de
lotería por un impulso o por diversión, pero también pueden entrar en juego factores
como creer, aunque sea vagamente, en la posibilidad de ganar una suma considerable.
En los juegos de naipes, como el póquer o el bridge, se espera jugar mejor si se logra
tener una idea realista de la posibilidad de que otro jugador tenga una determinada
mano de cartas. Muchos problemas de decisión, ya sean serios o frívolos, pueden
afrontarse en mejores condiciones si se comprende el concepto de probabilidad. En
mi opinión, siempre es preferible conocer que ignorar, y una buena manera de llegar
a conocer la probabilidad consiste en familiarizarse con una serie de juegos en los
que ésta desempeña un papel relevante. 
Ser un experto en probabilidad puede no bastar para tomar decisiones acertadas. A
veces, lo único que se consigue saber es en qué nos hemos equivocado. No obstante,
por término medio, tanto en el juego como en la vida real, el proceso de toma de
decisiones mejora si somos capaces de evaluar la probabilidad de los distintos
resultados posibles. Este ensayo no es un tratado sobre la teoría de la probabilidad, sino un conjunto de planteamientos en cuya resolución intervienen argumentos
probabilísticos.

lunes, 20 de enero de 2014

Francisco Vera- Veinte matemáticos celebres Capitulo X Maurolico y Commandino

El humanismo en la matemática
La posición geográfica de Italia, cerca del Imperio bizantino, el refinamiento de su cultura y su riqueza material, fueron causas que contribuyeron grandemente a que allí se iniciase el movimiento que ha pasado a la Historia con el nombre de Humanismo, precursor de otro movimiento llamado Renacimiento, de límites ambos tan imprecisos que viven muchas veces en perfecta simbiosis.
Los humanistas, al imitar en la forma y en el fondo a los escritores de la antigüedad clásica, difundieron las ideas griegas y romanas e intentaron armonizar los conocimientos humanos con las creencias religiosas, corrigiendo el abuso silogístico y humanizando la Ciencia.
Ya Dante se había mostrado entusiasta partidario del gusto clásico dejando preparado el terreno en que Petrarca, el primer hombre moderno, habría de cosechar los mejores frutos. Su exaltado individualismo y su preocupación por el autoanálisis, le hacen el verdadero precursor del Renacimiento literario, que habría de tener un digno émulo en Boccaccio, como erudito divulgador de las ideas humanistas.
En el campo del Arte, los hombres del Quattrocento producen una revolución con la perspectiva lineal y el escorzo, con la representación del desnudo y con la tendencia realista. Brunelleschi, Donatello, el Verrochio y Botticelli preparan el advenimiento de Miguel Ángel, de Rafael y de los pintores de la escuela veneciana, como Dante, Petrarca y Boccaccio anuncian la eclosión que habrían de tener las letras con Maquiavelo, Castiglione, Guicciardini, Ariosto, Tasso y Pedro Aretino, precursor éste, de la decadencia renacentista al triunfar el arte académico, amanerado, frío y cerebral, a mediados del siglo XVII, muerto León X, y sus sucesores, conquistada ya Roma por las tropas imperiales que convirtieron su política liberal y de mecenazgo en ciega y sistemática oposición a todo lo que no pudiesen vigilar directamente y al desarrollo de la Ciencia.

Francisco Vera- Veinte matemáticos celebres Capitulo IX Lobachewski y Hamilton

Antikantiano y kantiano
Un matemático inglés de fines del siglo pasado, Clifford, ha llamado a Lobatchewsky "el Copérnico de la Geometría". Ningún título cuadra mejor, en efecto, al geómetra ruso, cuya obra es pareja a la del astrónomo polaco, pues lo que éste hizo en la Astronomía del primer tercio del siglo XVI, es análogo a lo que hizo aquél en la Geometría del primer tercio del XIX. En la Astronomía inmediatamente anterior a Copérnico existía el confusionismo reinante en toda la Mecánica pregalileana, que se nutría del jugo aristotélico, como en la Geometría inmediatamente anterior a Lobatchewsky existía el confusionismo euclídeo del que no había salido a pesar de los trabajos de los geómetras franceses de la Revolución. La dictadura filosófica del Estagirita impedía la libre investigación astronómica porque sus resultados podían poner en un aprieto algunos dogmas católicos, como la dictadura filosófica de Kant impedía la libre investigación geométrica porque sus resultados podían poner en un aprieto algunos dogmas apriorísticos. La obra de Copérnico representa el triunfo de la razón sobre la imaginación, sobre los prejuicios y sobre los sentidos, pero fue necesario que Giordano Bruno muriese en la pira para que la teoría heliocéntrica se incorporase definitivamente a la Ciencia. La obra de Lobatchewsky representa el triunfo de la razón sobre la Crítica de la razón y sobre el apriorismo espacial kantiano; pero, afortunadamente, no necesitó ningún mártir para imponerse, aunque sí tuvo que luchar contra la opinión vulgar durante más de veinticinco años y permaneció en un punto muerto porque la Europa científica de entonces ignoraba el ruso y hubo que esperar a las traducciones francesas y alemanas para que el mundo matemático la conociera. El descubrimiento de Copérnico nos enseñó a considerar el Universo bajo un nuevo aspecto, como el descubrimiento de Lobatchewsky nos enseñó a considerar la Geometría bajo un nuevo aspecto también.
¿Qué nuevo aspecto es éste? Muy sencillo. Más de veinte siglos llevaban los geómetras intentando demostrar el postulado de Euclides, pero a ninguno, excepto a Gauss que, como de costumbre, guardó el secreto se le ocurrió la sencilla idea genial que a Lobatchewsky: prescindir de la famosa proposición euclídea que afirma que por un punto exterior a una recta hay una paralela única, y construir una Geometría rigurosamente lógica como si no existiera tal postulado. Si éste era una consecuencia de los demás, debía llegarse a una contradicción, que es la prueba matemática de la falsedad. Pues bien, Lobatchewsky no sólo no llegó a ninguna contradicción, sino que se encontró con una Geometría nueva, distinta de la de Euclides, pero sin oposición lógica con ella, una Geometría que podía convivir con la griega en un sector más amplio que el que conserva el nombre primitivo aunque haya alterado su significación.

Francisco Vera- Veinte matemáticos celebres Capitulo VIII Riemann y Boole

Una revolución en geometría y un pronunciamiento en álgebra
Los matemáticos ingleses de la primera mitad del siglo XIX sólo estudiaban lo que les interesaba particular y personalmente, como para distraerse, sin dar ninguna importancia a los problemas que preocupaban al resto de Europa, separada de ellos por una cinta de mar. Además de isla geográfica, Inglaterra era una isla matemática que vivía del jugo newtoniano. Un nacionalismo estrecho le impidió aceptar las teorías dé Leibniz, y la consecuencia fue que la Matemática inglesa quedó estancada durante un siglo: exactamente hasta el año 1812, en que se fundó la Sociedad Analítica de Cambridge, que puso remedio a tan lamentable estado de cosas. Claro es que sus fundadores tuvieron que enfrentarse con políticos de ignorancia ejemplar. Sirva de muestra el siguiente botón:
A principios del siglo XVII el Ministerio, de Hacienda inglés adoptó los bastoncitos de Neper para hacer las operaciones contables. Estos bastoncitos consistían en unas tiras rectangulares de madera de unos siete centímetros de largo por ocho, milímetros de ancho, divididas en nueve cuadrados por medio de líneas transversales, cada una de las cuales estaba encabezada por una cifra, y debajo de ésta sus productos por los números dígitos, escritos en los sucesivos cuadrados de modo que si el producto tiene dos cifras, la de las decenas se coloca en el triángulo superior de los dos en que cada diagonal divide el cuadrado. Mediante una manipulación engorrosa se hacía la multiplicación de los números de varias cifras; y en cuanto a la división tan complicada que constituía una verdadera tortura, hasta el punto de que solo la abordaban hábiles calculadores. Para ente absurdo sistema de operar, la burocracia inglesa creó una nube de escribientes, tenedores de libros y actuarios que se sucedieron por generaciones en las covachuelas del Ministerio hasta que un día, en tiempo de Jorge III (1760 - 1820), un ministro "revolucionario" tuvo la audacia de incoar un expediente para saber si debían seguir llevándose las cuentas por aquel procedimiento, análogo al de Robinson para tener al día el calendario en su isla desierta o cambiarse por otro más moderno. Se levantó tal tempestad de protestas que hubo que esperar hasta el año 1826 para que se decretara la desaparición de aquellos palitroques, cuyo número había crecido tan monstruosamente durante más de un siglo, que todavía en 1834 había tal cantidad que se planteó el problema de decidir lo que se iba a hacer con ellos. A cualquiera que no fuese un político conservador inglés se le hubiera ocurrido tirarlos, pero a un tory británico lo que se le ocurrió fue llevar a Westminster aquellos pedacitos de madera apolillados y podridos como si se tratara de una reliquia.
Era tan absurdo esto que, al fin, triunfó el sentido común y se dio la orden de quemarlos, pero clandestinamente para que no se alarmaran los conservadores. Los bastoncitos fueron arrojados a una estufa de la Cámara de los Lores donde se les prendió fuego, y como la madera era viejísima ardieron tan admirablemente que las llamas prendieron en los artesonados de la Cámara de los Lores, de ésta se propagó el fuego a la de los Comunes y a Inglaterra le costó la broma varios millones de libras esterlinas.
Los matemáticos alemanes, al revés que los ingleses, tenían más amplia visión; y a partir de las Disquisitiones Aritmeticae de Gauss, que se publicaron el primer año del siglo XIX, es interminable la lista de obras originales que aparecieron hasta 1855, fecha en que muere el princeps mathematicorum y queda roto el último lazo con la Matemática de la centuria anterior.

Francisco Vera- Veinte matemáticos celebres Capitulo VII Cayley y Sylvester

Durante mucho tiempo ha sido artículo de fe la creencia en el valor de símbolos matemáticos sin sentido, creencia que ha dado lugar a verdaderos absurdos cuyo origen está en la que Enriques ha llamado "superstición del formalismo”, que nace de una falsa interpretación del principio de Hankel, según el cual toda expresión escrita con los símbolos de la Aritmética universal sigue siendo válida cuando las letras dejan de representar simples “cantidades". Hoy sabemos que esto sólo es cierto bajo ciertas condiciones. El año 1863 Weierstrass estableció el llamado teorema final de la Aritmética que demuestra la no existencia de ningún sistema de números complejos de más de dos componentes en el que el producto satisfaga todas las leyes formales de la Aritmética.
Ya el año 1858 Cayley había encontrado una extraña propiedad en el cálculo de matrices: la no conmutatividad del producto, que causó el efecto de una herejía; pero las herejías dejan de serio cuando son razonables y la de Cayley ha sido, precisamente, la base de la obra de Heisenberg que ha modificado la Mecánica ondulatoria, sustituyendo el principio de causalidad toda causa tiene un efecto, admitido como dogma científico, por el de indeterminación, que reduce a la modesta categoría de probable la certeza que orgullosamente hemos venido atribuyendo a la Ciencia.
Pero en la primera mitad del siglo XIX, las cosas pasaban de otro modo, y fueron los ingleses quienes, saliendo de su "espléndido aislamiento", las modificaron de raíz. El año 1812 Jorge Peacock, Carlos Babbage y Juan Federico Guillermo Herschell fundan en Cambridge una "Sociedad Analítica" que no tardó en hacer progresar la Matemática, encerrada hasta entonces en moldes newtonianos. Dicha sociedad fue el germen de lo que después se ha llamado escuela de los reformadores ingleses, quienes, con su característica originalidad insular, pusieron los cimientos de la actual Álgebra por postulados; y cuando el año 1841 Cayley y Sylvester crean la teoría de invariantes, de importancia capital en la Física teórica, el terreno está ya preparado para recibir la nueva semilla.

Francisco Vera- Veinte matemáticos celebres Capitulo VI Newton y Leibinz

Luchas políticas en la matemática
Uno de los debates más agrios que registra la historia de la Ciencia es el que sostuvieron Newton, Leibniz y sus respectivos partidarios sobre la prioridad del descubrimiento del Cálculo infinitesimal; y lo más curioso del caso es que el asunto en litigio no existía realmente, puesto que las investigaciones de Leibniz y de Newton eran completamente distintas.
Newton y Leibniz son dos espíritus diferentes. Newton es inglés y Leibniz alemán: Newton permanece fiel a la tradición griega, como lo demuestra el elogio que hizo del Análisis geométrico, del español Hugo de Omerique, y Leibniz sueña con una combinatoria universal, de ascendencia luliana, como estudio a priori de las diferentes combinaciones que dan origen a las operaciones aritméticas; Newton es un poco arbitrario y artificial y Leibniz es un metodista que se acerca más a Descartes que su ilustre adversario; Newton es un enamorado de lo bello y armonioso, lo que le obliga a oponerse al carácter mecánico del Álgebra y Leibniz se siente irresistiblemente atraído por el idioma universal simbólico de las generalizaciones algebraicas, que le conduce a hacer asumir al racionalismo categoría de dogma.
Para centrar la famosa polémica, recordemos brevemente la correspondencia cruzada entre ambos matemáticos durante los años 1673-1676 por intermedio de Oldenbourg, secretario de la Royal Society.

Francisco Vera- Veinte matemáticos celebres Capitulo V Descartes y Fermar

Celos mal reprimidos
La época a que se contrae este trabajo, primera mitad del siglo XVII, tiene muchos puntos de contacto con la actual. Terminaba entonces el Renacimiento, como termina hoy la Edad Moderna, en el colapso que empezó en 1914, tuvo una recidiva en 1939 y todavía no ha salido de él. En los días que vivieron Descartes y Fermat, protagonistas del presente ensayo, como en los días que vivimos, se hundía rápidamente un estado de cosas y no se había cimentado aún uno nuevo. Como hoy, el mundo estaba incómodo.
El siglo anterior había despertado al encanto de las musas griegas redescubiertas, y el ideal medieval de morir para este mundo quedó sustituido por el ideal renacentista de vivir para este mismo mundo, cumpliéndose así la exclamación del Petrarca: "Juliano renace”. Una luz inédita bañó las condiciones de vida; se exaltó el individualismo; la conciencia humana protestó contra la tiranía colectiva; Gutenberg coronó la obra de Colón y, al difundirse las ideas nuevas, todos los valores espirituales se quebrantaron. La Roma papal vio alzarse contra ella la figura de Lutero, y Francisco I de Francia, rey cristiano, combatía al católico Carlos I de España, buscaba la amistad de los protestantes de Alemania y se aliaba con los turcos.
El ansia de saber, el apetito de curiosidad que caracterizó al Renacimiento, se prolongó hasta el, siglo XVII, que es el de los grandes matemáticos, cuya primera mitad ilustran especialmente los nombres de Fermat y de Descartes.
Nace Descartes en 1596 y Fermat en 1601; muere Descartes en 1650 y Fermat en 1665. Tienen, por tanto, los dos un período común de cuarenta y nueve años: medio siglo fecundo y denso, que vio crear la Geometría Analítica con Descartes y la teoría de números con Fermat.
Ambos pertenecían a familias de parlamentarios y ambos estudiaron Jurisprudencia: Descartes en Poitiers, Fermat en Toulouse; pero éste ejerció la abogacía y aquél no. Descartes abrazó la carrera de las armas porque se aburría en París, y Fermat fue magistrado en Toulouse porque tenía espíritu burgués; Descartes fue filósofo y Fermat jurisconsulto y los dos dedicaron a la Matemática sus ratos de ocio. Nada más, ni nada menos.
Descartes publicó su Geometría como un ejemplo de su método, y su labor matemática sólo fue un episodio de su carrera de filósofo; Fermat escribió mucho, mas fue su hijo Samuel quien editó la mayor parte de sus trabajos. Ambos se dieron a conocer a través de su correspondencia con los sabios de su tiempo; pero mientras la época de Descartes ha sido adjetivada con su apellido, el nombre de Fermat, aunque parezca extraño, no aparece citado por Voltaire entre los que ilustraron el que, con evidente cortesanía, llamó siglo de Luis XIV.
Descartes y Fermat tienen de común su admiración por los griegos, franca en Fermat, oculta en Descartes. Fermat reconstruye los Lugares planos de Apolonio y traduce la Aritmética de Diofanto; Descartes quiere romper con la tradición griega, pero su obra no es, en el fondo, sino un retorno a Grecia, y ambos tienden un puente entre lo abstracto y lo concreto haciendo que la Matemática pierda su rigidez antigua para asumir una categoría intelectual independiente de toda representación empírica, y determinando un nuevo aspecto de la Geometría que proyecta su influencia sobre el monismo de Spinoza y sobre el dualismo de Malebranche, quienes inician una etapa de filosofía matemática empapada de fermatcartesianismo.