miércoles, 25 de septiembre de 2013

Colección cientifica de Time-Liffe Matemáticas 5 El dominio de los misterios del movimiento (parte 2)

Parte 1

4. Una cubeta de infinitesimales
Al considerar toda curva como una sucesión de infinitos segmentos pequeños, o toda área como una acumulación de infinitas partes pequeñas, los griegos - particularmente Arquímedes - habían solucionado un número de problemas específicos en torno a las tasas de variación. Los matemáticos de los siglos XVI y XVII utilizaron también métodos infinitesimales, aunque raras veces a través de las rigurosas pruebas griegas.
Kepler, por ejemplo, utilizó los infinitesimales para dar a los viñateros una fórmula para calcular el volumen de las cubas. En la época de Descartes, y en los quince años siguientes a su muerte, su compatriota Pierre de Fermat y el inglés John Wallis, habían empezado a utilizar los infinitesimales en los útiles moldes analíticos de ecuaciones. Después, alrededor del año 1663, el profesor de Newton en Cambridge, Isaac Barrow, pasó a ser el primer hombre en darse cuenta de que el problema de la tangente y el problema del área son dos caras de la misma moneda.
Cuando Newton empezó por primera vez a unificar todas estas profundizaciones preliminares en la única y bien articulada estructura del cálculo, mostró a Barrow algunos de sus primeros resultados. Barrow se entusiasmó tanto que generosamente hizo saber en Cambridge que Newton había hecho lo que él fracasara en hacer. Años después, en 1669, cuando se retiró, cooperó para que nombraran a Newton su sucesor en la cátedra de matemáticas en la Universidad.

A partir de entonces llegaron a Newton honores e inspiraciones en un caudal continuo. En las cuatro décadas siguientes formuló la ley de la gravitación y la utilizó para explicar los movimientos de los planetas, la luna y las mareas; analizó el espectro de color de la luz, construyó el primer telescopio (que reflejaba), desarrolló innumerables experimentos de alquimia; trató de reconciliarse con las Escrituras sobre la época, 4004 a. de c., que corrientemente se aceptaba como la fecha de la creación de Adán; actuó como miembro del Parlamento; fue nombrado gobernador de la Casa de la Moneda Británica; caballero por la reina Ana en 1705 y le eligieron presidente del club científico británico, la Royal Society, desde 1703, hasta su muerte en 1727.
Aunque es bastante extraño, Newton reveló sus monumentales descubrimientos a sólo unos cuantos colegas. Se ha dicho que siempre estuvo demasiado ocupado con nuevas ideas para hallar tiempo de escribir las viejas, y que le desagradaban en grado sumo las luchas y las críticas que se originaban inevitablemente en aquellos días en torno a las manifestaciones científicas. Después, también, no era demasiado hablador. Mientras estuvo en el Parlamento su única declaración fue una petición para que abrieran la ventana. En una ocasión, el astrónomo Edmund Halley fue a verle para preguntar si sabía qué camino tomaría un planeta alrededor del sol, en el supuesto de que la única fuerza que le influyera fuese una fuerza que disminuye en relación al cuadrado de su distancia respecto al sol. Newton dio la respuesta inmediatamente: la trayectoria sería elíptica.
Cuando se le preguntó cómo lo sabía, explicó que casualmente había elaborado el problema años antes, siendo un estudiante de grado. En otras palabras, había elaborado una de las leyes fundamentales del universo y no lo había dicho a nadie; alentado por Halley para que volviera a crear sus cálculos originales, siguió hasta producir su obra maestra, la Principia.
La Principia de Newton se reconoce generalmente como la obra científica más influyente, conclusiva y revolucionaria que jamás apareciera impresa. En ésta, no tan sólo explicó por qué el sistema solar opera de la forma en que lo hace, sino que también estableció las leyes de la dinámica que todavía son los ingredientes principales de la física de la ingeniería práctica.

La mayor parte de estas leyes las elaboró Newton por medio del cálculo, pero, al igual que Arquímedes antes que él, prefirió presentar su trabajo como una extensa demostración griega, redactada casi totalmente en términos de la geometría clásica.
Ni siquiera las hábiles instigaciones de Halley pudieron convencer a Newton para que publicara su cálculo, hasta que otro matemático, el alemán Gottfried Wilhelm Leibniz, hubiera vuelto a crear toda la maquinaria mental. Leibniz inventó el cálculo diez años después de Newton, en 1675, y en 1684 publicó su versión veinte años antes de que Newton se decidiera a dar la primera explicación de su propia versión.

Al igual que Newton, Leibniz tuvo tanto éxito y fue tan práctico como las matemáticas que descubrió. Hijo de un acomodado catedrático de universidad, aprendió griego y latín a la edad de 12 años, asistió a la universidad, se graduó en leyes y siguió hasta llegar a ser consejero de reyes y princesas.

Viajó por toda Europa investigando linajes dudosos para establecer los derechos de los pequeños príncipes a los tronos vacantes. Formuló muchos de nuestros modernos principios del poder de la política internacional - incluyendo la frase «equilibrio de poderes» -. En sus viajes a París, estudió álgebra y geometría analítica bajo la dirección del gran físico de óptica Christian Huygens. Y mientras viajaba en misiones diplomáticas, creó nuevas matemáticas simplemente como entretenimiento, incluyendo su propia versión del cálculo.
Aunque Newton consiguió mucho más con el cálculo que Leibniz, éste tuvo una notación superior para aquél - una que pulió tan cuidadosamente que todavía la utilizamos en la actualidad -. Fue Leibniz quien primero escribió las derivadas así: dy/dx o dx/dy , formas que sugieren las mediciones en forma de fracción de la tasa de derivación a las que hacen referencia. (Newton escribió la derivada de y, como 001y, la derivada de x como 002. Los puntos en el simbolismo de Newton llevaron a los estudiantes del siglo XIX en Cambridge a protestar contra «los puntos» de la notación inglesa y a defender las «d» de la notación continental.)
Desgraciadamente, Newton y Leibniz, en sus últimos años, se embrollaron en una disputa patriotera en torno a quién fue el primer descubridor. El resultado fue que los intelectuales en el continente, apoyados por la notación de Leibniz, prosiguieron hasta desarrollar el cálculo mucho más, mientras que los matemáticos ingleses, con el estorbo de la menos feliz notación ideada por Newton, se encontraron en un atolladero.
5. Saludo a la garra de un león
La supremacía de la aproximación continental no surgió, sin embargo, mientras vivió Newton. Por lo menos dos veces después de haberse desencadenado la rivalidad, Leibniz y sus seguidores expusieron problemas con los que esperaban dejar patidifuso a Newton. Cada vez Newton obtuvo las respuestas en una sola tarde después de regresar a casa de su trabajo en la Casa de la Moneda. Uno de estos problemas era uno particularmente demoníaco: hallar la forma de la curva bajo la cual se deslizara una cuenta bajo la influencia de la gravedad para moverse desde un punto superior a uno inferior en el menor tiempo posible. El problema era importante por ser de los primeros ejemplos de «problemas de máximos y mínimos» que en la actualidad ocupan a los matemáticos - maximizar la productividad industrial o minimizar la cantidad de combustible requerida para alcanzar la luna -. Newton solucionó el problema en una noche y transmitió su solución. Al recibirse, Johann Bernoulli, el discípulo de Leibniz que había expuesto el problema, según se dice, manifestó «Tanquam ex ungue leonem» que traducido libremente significa «reconozco al león por sus garras».
Los lógicos de la siguiente generación criticaron agudamente tanto a Newton como a Leibniz por haber utilizado los equivalentes de infinitesimales - por haber añadido cosas no existentes para crear las partes de las áreas y por haber transformado las tasas de variación en pendientes instantáneas medidas prescindiendo totalmente del tiempo.
El metafísico irlandés George Berkeley, en un ensayo titulado «El analista», examinó la lógica del «cálculo diferencial» de Newton y concluyó: «No son ni cantidades finitas, ni cantidades infinitamente pequeñas, ni siquiera nada: ¿no podemos llamarlas los fantasmas de cantidades difuntas?».
Los matemáticos del siglo XIX iban a satisfacer tales críticas al invocar nuevos estándares de rigor para el cálculo. Pero mientras resistió la prueba del éxito, funcionó. Al utilizar el cálculo, los científicos explicaron todo proceso natural como una secuencia de acciones y reacciones, de causas y efectos. La naturaleza, no obstante, no puede determinarse por medio de este sencillo procedimiento mecánico. Todo el mundo sabe que hay accidentes en las fuerzas que producen el movimiento. Pero las leyes de estos accidentes son también matemáticas y los matemáticos contemporáneos de Newton y Leibniz estaban elaborando las leyes de la probabilidad.

Matemáticas David Bergamini Colección cientifica de Time-Life

No hay comentarios: