miércoles, 25 de septiembre de 2013

Colección cientifica de Time-Liffe Matemáticas 4 Un enlace feliz entre curvas y cantidades (parte 1)



Como localizar los puntos en el globo
El mapa alemán del siglo XV de arriba, basado en los principios expuestos por Ptolomeo en el año 150, es uno de los primeros que utilizó líneas curvas de latitud y longitud. En la geometría analítica, desarrollada en el siglo XVII, se utilizan «trazados» similares para localizar los puntos en una superficie plana.

1. Introducción
En el año 1616 un joven aristócrata francés llamado René Descartes se licenció en Derecho en la Universidad de Poitiers y se dispuso a rehacer el mundo. Estaba profundamente descontento de lo que había aprendido de los académicos, todavía esclavos de los pensadores de la antigüedad. Descartes desdeñó la filosofía de los antiguos por su evidente insuficiencia de verificación. «Vi, señaló más tarde, que había sido cultivada durante mucho tiempo por hombres distinguidos, pero que a pesar de ello no hay ni una sola materia dentro de su esfera que no esté todavía en discusión. »

Descartes confiaba en que podría remediar todo este enredo. Aunque tal ambición era poco común en un muchacho de 20 años, en su caso sí iba a tener un resultado muy poco común. Iba a hacer todo cuanto soñó, y a refundir el pensamiento humano como sólo lo han hecho un grupo de hombres en el curso de la historia. Lo que todavía es más desusado, iba a llevar a cabo su resolución por medio de una filosofía fresca que surgió de las matemáticas. Ésta fue la «geometría analítica», que unificó toda la aritmética, el álgebra y la geometría anteriores en una técnica unitaria - una técnica consistente en considerar los números como puntos en un gráfico, las ecuaciones como formas geométricas y las formas como ecuaciones -. La geometría analítica se transformó en los cimientos sobre los que se construyeron la mayor parte de las matemáticas superiores actuales y gran parte de las ciencias exactas.
El mundo al que salió Descartes en el invierno de 1616 se reavivó con ideas frescas e intrépidas hazañas: los protestantes proclamando sus austeros patrones de conciencia individual; naciones rivales proyectando imperios en el extranjero; los comerciantes holandeses de pieles haciendo tratos en Manhattan; los colonos ingleses luchando para sobrevivir en Jamestown. Los amantes del teatro en Londres lamentaban la reciente muerte de Shakespeare. Monteverdi estaba componiendo las primeras grandes óperas mundiales. William Harvey había justamente iniciado las conferencias en que describía el corazón, no como un centro de emociones, sino como una bomba para la sangre. Kepler estaba preparando la publicación de la tercera y última de sus leyes. La idea de que el sol es el centro del sistema solar - propugnada por el astrónomo polaco Copérnico - había sido precisamente calificada de herejía por la Santa Iglesia en Roma; Galileo, ocupado con el telescopio que acababa de descubrir había sido prevenido de que cesara en su entusiasta apoyo de la idea.
En medio de esta amplia onda de creatividad, el joven Descartes llegó al convencimiento de que el mundo necesitaba una fórmula que disciplinara el pensamiento racional y unificara el conocimiento. Se dispuso a encontrarla en el «conocimiento de mí mismo» y en el «gran libro del mundo». Después de probar brevemente los placeres de París, se convirtió en caballero de armas del príncipe holandés de Nassau y después del duque alemán de Baviera. Mientras fue soldado pasó la mayor parte del tiempo, como él mismo dice, «con la cabeza y las orejas en el estudio de las matemáticas, rama del conocimiento que le encantaba... debido a la certidumbre de sus pruebas y la evidencia de sus razonamientos». En el espacio de dos años, a la edad de 22, empezó a desarrollar su «geometría analítica». En un año más había ideado también «el discurso del método», que iba a hacerle famoso como filósofo.

2. Una sesión en una estufa
Este «método» acudió a su mente durante un solo día de revelación en un campamento militar a orillas del Danubio. Era un día frío y Descartes lo pasó meditando en una habitación pequeña y caliente conocida en aquellos tiempos por una «estufa». Lo que formuló en la estufa y elaboró subsiguientemente, fue la doctrina de que todo el conocimiento - tanto pasado como futuro - debía de elaborarse en términos de razonamiento matemático. Descartes propuso que los intelectuales contemporáneos dejaran de fiarse tan profundamente de las ideas antiguas y que empezaran de nuevo. Indicó la necesidad de que trataran de explicar toda la naturaleza a través de un esquema científico deductivo. Éste - consideró- debía empezar con variedades axiomáticas simples y proseguir hasta los conceptos difíciles. «Las largas cadenas de razonamientos simples y fáciles a través de los cuales los geómetras están acostumbrados a alcanzar las conclusiones más difíciles de sus demostraciones -escribió - me habían llevado a imaginar que todas las cosas de cuyo conocimiento son capaces los hombres están mutuamente conectadas entre sí de la misma forma.»
Esta visión de Descartes sigue siendo la ambición de la ciencia moderna. Pero el propio Descartes tuvo dificultad en establecer los axiomas básicos de los que tenía que partir su gran diseño. Cuanto más buscaba verdades fundamentales, menos las encontraba. Al final no pudo encontrar ninguna a excepción de la simple afirmación, “Cogito, ergo sum” - «Pienso, por lo tanto, existo» - con la que quería decir que no podía hallar bases mejores para empezar a comprender el mundo real que la habilidad del hombre para utilizar su propia mente.
Hasta 18 años después de la revelación en la estufa, Descartes no compartió su filosofía con el público. Realizó una prueba provisional en un libro y después voluntariamente la suprimió, como deferencia a su fe católica, ya que suscribía con ella las ideas herejes de Copérnico en torno al universo. Finalmente, después de repetidas sugerencias de los amigos, Descartes, en 1637, publicó el Discurso sobre el método para dirigir correctamente la razón. Obra fundamental en filosofía, inmediatamente le situó como uno de los grandes pensadores de la época.
Descartes concluyó El Método con tres ejemplos concretos sobre cómo podía ser aplicado. Los dos primeros pretendían explicar el comportamiento de las lentes y el movimiento de los astros. El tercero fue una nota marginal de 106 páginas, La Geometría, a la que los matemáticos todavía se refieren afectuosamente por su nombre en francés, La Géométrie. Este extenso apéndice constituía, según el filósofo inglés del siglo XIX, John Stuart Mill, «el mayor paso unitario jamás realizado en el progreso de las ciencias exactas». Es extraño que Descartes enterrara esta joya al final de su libro. En los tres siglos siguientes la geometría analítica iba a dejar atrás la filosofía como base para la creación de la ciencia que había soñado Descartes. Y a pesar de esto él, propiamente, nunca la continuó más allá de su breve original.
La Géométrie propugnaba la idea de que un par de números pueden determinar una posición en una superficie: un número como una distancia medida horizontalmente, el otro como una distancia medida verticalmente. Esta idea se ha convertido en familiar a quien utiliza papel cuadriculado, lee el plano de una calle o estudia las líneas de latitud y longitud en un atlas. El papel cuadriculado no se había inventado en la época de Descartes, pero el concepto del gráfico propiamente, con su utilización de líneas cruzadas para fines de referencia, estaba contenido en su obra. Descartes mostró que con un par de líneas rectas que se corten como varas de medir se podía construir toda una red de líneas de referencia, en las que los números se podían designar por puntos; que si las ecuaciones algebraicas eran representadas como secuencias de puntos, aparecerían como formas geométricas; y que las formas geométricas, a su vez, podían traducirse en secuencias de números representadas por ecuaciones. En honor a Descartes denominamos a las primitivas líneas que se cortan, el sistema de «coordenadas cartesianas» en el que la línea vertical se conoce por el eje y, y la línea horizontal por el eje x. La forma en que funciona el gráfico cartesiano en términos de un plano de calles, puede verse en los esquemas anteriores.
A través del concepto de coordenadas con que expuso su geometría analítica, Descartes dio a los matemáticos nuevo enfoque para el tratamiento de la información matemática. Mostró que todas las ecuaciones de segundo grado, o cuadráticas, cuando se representaban como puntos unidos, se convertían en líneas rectas, círculos, elipses, parábolas o hipérbolas - las secciones cónicas en las que Apolonio había derrochado tanto ingenio unos 1900 años antes -. Cuando la ecuación x2 – y2 = 0 se representa gráficamente, se transforma en dos líneas rectas que se cortan, la ecuación x2 + y2 = 9 se transforma en un círculo, x2 – y2 = 9 en una hipérbola, x2 + 2y2 = 9 en una elipse, y x2 = 9y en una parábola. Lo que es más, Descartes prosiguió hasta demostrar que la ecuación general que representaba a todas las cuadráticas
ax2 + bxy + cy2 = d
se transforma inevitablemente en una curva cónica cuando se la representa.

Al ir más allá de las ecuaciones cuadráticas, Descartes estableció que cada clase de ecuaciones da lugar a toda una nueva familia de curvas -cardioides, conchoides, foliums de pétalos, helicoides, lemniscatas. El grado de una ecuación determina el número máximo de puntos de intersección que la curva representativa de la ecuación puede tener con una línea recta. Una curva de primer grado -es decir, una línea recta puede cortar a otra línea recta sólo una vez. Una curva cónica de segundo grado puede ser cortada por una línea recta sólo en dos puntos. Las curvas cúbicas, las cuales una línea recta sólo puede cortarlas tres veces, tienen a menudo forma de S. Las curvas de cuarto grado, con cuatro posibles puntos de intersección, pueden tener la forma de una W o un número 8. Incluso la figura femenina, con su forma de reloj de arena, puede expresarse algebraicamente con una ecuación.
Las curvas que representan a una ecuación de un cierto grado tienen muchas características comunes - tantas, de hecho, que cada una caracteriza por sí misma una clase de curvas y hace que un matemático pueda hablar de una curva de «quinto grado» o de «séptimo grado» a un colega y suscitar un gran conjunto de características geométricas específicas, peculiares a todos los miembros de la familia de curvas en cuestión.
Gracias a la geometría analítica, cada ecuación puede convertirse en una forma geométrica y toda forma geométrica en una ecuación, Algunas formas, ciertamente, pueden ser representadas solamente por ecuaciones indefinidamente largas y algunas ecuaciones representan formas difíciles de visualizar llenas de discontinuidades y puntos múltiples. No obstante, toda forma geométrica tiene su equivalente en forma algebraica.
En su contenido totalmente comprensivo del conocimiento matemático pasado, la geometría analítica iba a crecer mucho más allá de la breve presentación de Descartes, y no iba a tocar nada de las matemáticas sin transformarlo. Ramas del pensamiento matemático que parecían diferentes fueron conducidas ahora a su vertiente principal. Una fue la antigua técnica de la trigonometría, otra la reciente creación de los logaritmos.

Matemáticas David Bergamini Colección cientifica de Time-Life

No hay comentarios: