miércoles, 25 de septiembre de 2013

Colección cientifica de Time-Liffe Matemáticas 6 El cálculo de las posibilidades en un mundo inseguro

El echar una moneda al aire es un ejercicio de teoría de la probabilidad que todo el mundo ha probado: decir cara o cruz constituye una apuesta justa ya que la posibilidad de uno u otro resultado es por mitad. En un número grande de tiradas los resultados tienden a nivelarse. Para que saliera cara cincuenta veces consecutivas un millón de hombres deberían tirar diez veces por minuto cuarenta horas a la semana y sucedería una vez cada nueve siglos!






1. Introducción
Además de la certeza de la muerte y del pago de los impuestos, pocos aspectos de nuestra vida eluden la influencia de la probabilidad. Un agrupamiento imprescindible de genes determina nuestra constitución física. Un encuentro imprevisto puede decidir la persona que se elija para el matrimonio o un empleo. Un paso en falso inadvertido puede llevarnos a un hospital. Para todos los hombres, desde la época en que se anotó en el Eclesiastés, «el tiempo y la probabilidad ocurren».
Incapaces de controlar la probabilidad hacemos lo mejor posible: tratamos de evaluar la probabilidad de que ocurra un suceso particular. Nuestra charla la sazonamos con los adverbios de contingencia: «normalmente..., probablemente..., tal vez». Cada vez que contemplamos un suceso que todavía no se ha convertido en hecho, automáticamente realizamos una estimación de la probabilidad.
El cálculo de probabilidades ha sido una preocupación humana desde tiempo inmemorial. Desde la mitad del siglo XVII ha sido también una seria pretensión del matemático. De sus investigaciones en la materia ha surgido toda una especialidad de su profesión -las matemáticas de la probabilidad- y una forma de calcular las posibilidades que es más aguda que las adivinanzas de los legos. Para el matemático, la probabilidad es un porcentaje. Al combinarse, las probabilidades de los sucesos particulares pueden utilizarse para valorar las posibilidades de cadenas de sucesos. Para tratar estas combinaciones, se han formulado ciertas reglas básicas; son las conocidas por el nombre de leyes de probabilidad.
Muchas de las manifestaciones más evidentes de la moderna ciencia son, en efecto, apuestas repetidas basadas en las leyes de la probabilidad. Los teóricos matemáticos de los siglos XVIII y XIX razonaron que el cálculo de Newton, debido a que analizaba en forma tan satisfactoria el cambio y el movimiento podía finalmente servir para revelar el futuro de uno o de todos los sucesos con absoluta precisión. Y de esta forma en su mayor parte avanzaron rápidamente hacia una filosofía de «determinismo mecánico». El matemático francés del siglo XVIII Pierre Simon de Laplace - que perfeccionó el análisis newtoniano del sistema solar en una gran obra titulada Mécanique Céleste(«Mecánica de los cielos») - escribió: «Dada por un instante una inteligencia que pudiera comprender todas las fuerzas por las que la naturaleza está animada y... suficientemente vasta para someter estos datos al análisis, abarcaría en la misma fórmula los movimientos de los cuerpos más grandes del universo y los del átomo más pequeño: para ella, nada sería incierto y tanto el futuro como el pasado, estarían presentes a sus ojos».
Los científicos en la actualidad no esperan alcanzar el conocimiento inmediato que soñó Laplace. La pequeñez inefable de las partículas reveladas por los desintegradores del átomo y la inefable grandeza del universo revelada por los telescopios del siglo XX les han convencido de que nunca comprenderán al dedillo «todas las fuerzas por las que la naturaleza está animada» y, lo que es una gran tranquilidad, que nunca estarán obligados «a someter estos datos al análisis».

Y, por lo tanto, los analistas modernos se han dedicado, en lugar de ello a hacer pronósticos basados en las matemáticas de la probabilidad.
Individualmente, las unidades más pequeñas de la naturaleza se mueven en una forma de azar que aparentemente no es predecible. Pero actúan en cantidades tan grandes que su comportamiento colectivo es totalmente predecible y con una exactitud conocida, una posibilidad de error conocida, que se valora por medio de probabilidad. Una población de trillones de moléculas de gas en un jarro y una población de millones de americanos detrás de los volantes pueden predecirse de la misma forma. Es imposible predecir que la molécula A hará una colisión con la molécula B o que el conductor X chocará con el conductor Y. No obstante, es posible decir aproximadamente el número de moléculas que entrarán en colisión en un segundo y aproximadamente cuántos conductores en un mes. Y la previsión permitirá que el científico alcance una conclusión, permitirá que una empresa de seguros establezca sus primas.
2. Un comienzo por el peor de los lados
Al servir a la ciencia y a los negocios, las matemáticas de la probabilidad han alcanzado un estado muy superior al de sus orígenes, que estaban ligeramente en el peor de los lados. La teoría de la probabilidad se inspiró en las preguntas de los jugadores que buscaban alguna información interna para ganar en las cartas o en los dados. Tartaglia y Cardano, ambos presentaron sagaces análisis de los problemas del juego. Pero su trabajo - tal vez demasiado relacionado con el juego para los matemáticos y demasiado matemático para los jugadores - fue olvidado en gran parte. La probabilidad en la forma que la conocemos en la actualidad, en lugar de ello, fue propugnada por un trío de franceses a mediados del siglo XVII un noble de elevada posición, el caballero De Méré y dos matemáticos esporádicos, Blaise Pascal y Pierre de Fermat.
Las principales preocupaciones de Pascal eran la filosofía y la religión. Le entusiasmaba también la geometría «proyectiva» - una geometría que se refiere a los problemas de perspectiva del dibujo y a las formas de las sombras a que darán lugar las figuras geométricas. Fermat era un jurista de profesión. Como se mencionó anteriormente, creó partes de la geometría analítica independiente de Descartes, pero se le recuerda principalmente como uno de los principales teóricos del número de todos los tiempos, una reputación que ganó al quedarse en casa hasta muy tarde, a la luz de la luna, después de las sesiones en el parlamento local.
En 1651 ó 1652 De Méré y Pascal coincidieron en un viaje a una ciudad de Poitou. Al tratar de encontrar un tópico de conversación mutuamente interesante con el que distraerse en el viaje, el mundano De Méré presentó al espiritual Pascal un problema matemático que había producido grandes controversias desde la Edad Media: cómo dividir el pote en un juego de dados que tiene que interrumpirse. Pascal ponderó el problema durante un par de años y finalmente, en 1654, lo comunicó a Fermat.
En la célebre correspondencia que siguió al problema e puesto por De Méré, Pascal y Fermat empezaron por estar de acuerdo en que, en un juego de dados no acabado, las apuestas sobre la mesa deberían dividirse según las perspectivas de ganar que tiene cada jugador. Cada jugador ha apostado 32 doblones de oro (el equivalente hoy en día a unos 176 dólares de oro actual) de que el número elegido saldrá tres veces en un dado antes que lo haga el número de otro jugador. Después de que el juego haya seguido durante un rato, el número 6 de De Méré ha salido dos veces, el cuatro de su oponente ha salido una sola vez. En este instante De Méré recibe una repentina citación, ¿cómo dividir los 64 doblones de oro de la mesa? El amigo de De Méré, podría sostener que dado que sus posibilidades de conseguir dos tiradas afortunadas son doblemente probables que las posibilidades de De Méré de obtener una tirada afortunada, tiene derecho a la mitad de lo que corresponde a De Méré, es decir, 21 1/3 frente 42 2/3 de De Méré. De Méré, por otro lado, podría sostener que en la tirada siguiente del dado lo peor que pudiera sucederle sería perder su ventaja, en cuyo caso el juego estaría nivelado, y en este supuesto tendría derecho a la división exacta que corresponde a 32 doblones de oro. Si, no obstante, en su próxima tirada tuviera suerte ganaría la apuesta original y recogería la totalidad de los 64 doblones. De Méré arguye, por lo tanto, que incluso antes de la tirada tiene derecho a 32 doblones, más 16 de los que sólo tiene la mitad de la certeza. Y está en lo cierto: Pascal y Fermat lo decidieron así.
De las investigaciones de Pascal y Fermat en torno a distintas situaciones del juego ha surgido la teoría moderna de la probabilidad -las leyes de la posibilidad -. La idea de que la posibilidad está regida por leyes puede parece poco convincente. Pero en verdad las leyes de la probabilidad no impiden la posibilidad de que un individuo tenga una racha de suerte, ni niegan el valor de los presentimientos en el juego. Empiezan a actuar como leyes sólo cuando hay muchas repeticiones - al tirar muchas veces los dados, al dar muchas veces las cartas, cuando ocurren muchas colisiones de coches, al considerar las vidas de muchas personas; este aspecto de la probabilidad se conoce por la ley de los grandes números.
La misma ley da a un individuo sólo una posibilidad remota de tener suerte constantemente - de actuar constantemente mejor de lo que una predicción de probabilidad garantizaría. Por otro lado, una racha de buena suerte no hace disminuir la posibilidad de que un individuo tenga suerte nuevamente en cualquier ocasión determinada; un vendedor que viaja miles de kilómetros al año sin ningún accidente no incurre en un riesgo mayor cada vez que sube a un avión. Las pistas de despegue y el radar no tienen memoria, y las posibilidades de sobrevivir en un vuelo determinado son tan buenas la milésima vez como la primera.

La ley de los grandes números es aplicable hoy a la mayoría de los usos prácticos de la probabilidad. Debido a éstos, la probable exactitud de cualquier previsión aumenta con el número de casos que comprende: el número de moléculas en un recipiente de gas o el número de pólizas de seguro de accidentes suscritas. Esta es una razón por la que las primas son mucho más elevadas en las pólizas individuales hechas a la medida para cubrir un riesgo particular, que las pólizas ordinarias que pueden extenderse a un número elevado de casos distintos. Por ejemplo, un actuario de seguros puede mirar los archivos referentes al tiempo atmosférico y hallar que, por término medio, en un día del mes de abril en la ciudad de Méjico, las posibilidades de que llueva son inferiores al 2 %.
Pero si un millonario mejicano desea asegurar contra el peligro de lluvia la recepción de la boda de su hija realizada al aire libre, la compañía de seguros no le dará cincuenta casos favorables contra uno, sino que sólo aproximadamente 10 a 1. Es decir, tendría que pagar alrededor de la décima parte del coste de la fiesta. Por otro lado, si un conductor hace la apuesta de 100 dólares con una compañía de seguros de que su coche no dará lugar a 300.000 dólares de daños al año, se le dará un trato mejor. Tendrá que pagar sólo un poco más de lo que corresponde a su participación en todos los daños y perjuicios que hagan colectivamente él y muchos miles de conductores como él.
3. Las huellas y los niños
Las matemáticas de la probabilidad influyen sobre muchas otras facetas de la vida moderna. Ayudan al investigador atómico a interpretar las huellas que impresionan en la película las partículas atómicas disparadas desde los ciclotrones. Ayudan al experto en cohetes a decidir qué factores de seguridad deberían construirse en los costosos sistemas de cohetes dirigidos. Ayudan a valorar a nuestros hijos en los testes de inteligencia y hacen posibles las predicciones de votos.
Básicamente, dos leyes son el fundamento de la probabilidad: la ley conjunta para calcular la probabilidad de dos sucesos que se presentan conjuntamente y la ley de exclusividad, para calcular entre dos sucesos la probabilidad de que ocurra uno u el otro. La ley conjunta dice que la posibilidad de dos sucesos independientes que ocurren conjuntamente es igual a la probabilidad de que ocurra uno multiplicado por la probabilidad de que ocurra el otro. Por ejemplo, la posibilidad de sacar al tirar una moneda es ½. La posibilidad de sacar cara tanto en la primera como en la segunda tirada es ½ x ½, o sólo ¼. La ley de exclusividad dice que la posibilidad de que sea cierta una cualquiera de estas dos posibilidades mutuamente exclusivas es igual a la suma - adición - de las posibilidades separadas de que cada una individualmente sea cierta. La posibilidad de sacar cara o cruz al tirar una moneda es igual a la posibilidad de sacar cara más la de sacar cruz: ½ + ½ = 1. El 1 representa la certeza, algo que aparecerá una vez en cada prueba particular.
Dado que los sucesos están a menudo relacionados y generalmente no son independientes o mutuamente exclusivos, las leyes conjunta y de exclusividad son de gran utilidad. La ley de los fenómenos conjuntos se halla modificada si la presentación del primer suceso afecta las posibilidades del segundo. Por ejemplo, la probabilidad de sacar uno de los 13 corazones en un juego de 52 cartas es 13/52 o simplemente ¼. Pero la posibilidad de sacar un corazón en la primera y segunda extracción de una baraja no es 13/52 x 13/52. Cuando se ha sacado un corazón y hay sólo 12 corazones y quedan 51 cartas para extraer, la probabilidad de que salga un corazón ha disminuido de 13/52 a 12/51. Como resultado, las posibilidades de los fenómenos conjuntos de sacar dos corazones seguidos han sido reducidas a 13/53 x 12/51. Esta modificación de la ley de los fenómenos conjuntos se denomina la ley de los sucesos condicionados.
Una observación similar es aplicable a la ley de los sucesos independientes. Si dos sucesos no son mutuamente exclusivos, las posibilidades conjuntas de que ocurra uno u el otro son iguales a la suma de sus posibilidades separadas menos la posibilidad de que ambas ocurran conjuntamente. Por ejemplo, las posibilidades del caballero De Méré de sacar o un 2 o un 3 en una tirada de un solo dado de seis caras sería 1/6 + 1/6, ya que los dos resultados son mutuamente exclusivos - no es posible que sacara ambos números en una sola tirada. En contraste, sus posibilidades de sacar un 2 en una cualquiera de las dos tiradas no sería mutuamente exclusivo; podría sacar un 2 en ambas tiradas. Como resultado, la posibilidad de los sucesos independientes de que salga un dos en una u otra tirada sería 1/6 + 1/6 modificado por la sustracción de 1/36 para representar la probabilidad de los sucesos conjuntos o dos 2 seguidos.

Una importante dificultad al aplicar las leyes de la probabilidad está en determinar todas las formas posibles en que puede presentarse un suceso. En los juegos de dados el problema sólo es relativamente difícil.


Cada tirada sucesiva de un dado, o cada nuevo dado añadido a un conjunto de dados que se tiran conjuntamente, multiplica el número de posibilidades por seis. Por ejemplo, si se tiran tres dados el número total de posibilidades es tres veces seis o 216. Todas estas posibilidades son igual de probables, pero muchas son idénticas en los efectos, es decir, el 15 puede salir en forma de 3, 6, 6, o un 6, 6, 3. La única diferencia entre ellos es su orden de aparición, y los distintos órdenes de aparición deben ser considerados al valorar las probabilidades. Utilizando un ejemplo poco agradable, un hombre que acaba en un hospital con una pierna rota no le importa si primero cayó y fue cogido después por un coche o primero fue atropellado y después golpeado.
Como instrumento para ahorrar trabajo, los matemáticos han elaborado reglas que les dirán a golpe de vista cuántos órdenes o colocaciones separadas pueden formarse en cualquier conjunto de posibilidades. Un conjunto de posibilidades, las cinco cartas posibles en una mano de póquer, por ejemplo, se conoce por una «combinación». Cada una de las formas en que pueden colocarse las cartas o cada orden en que pueden sacarse, se conoce por una «permutación».
Las leyes de las permutaciones y combinaciones a través de las que los teóricos de la probabilidad hacen la vida más fácil para ellos mismos, han llegado a obtenerse por medio de ponderar los ordenamientos o colocaciones que pueden salir de una bolsa. Supóngase, por ejemplo, que un soltero es igual de amigo de una pelirroja, de una rubia y de una morena; supóngase, además, que su cuidadosa política antimatrimonial consiste en salir con cada una de las chicas cada tres salidas. ¿Cuántas permutaciones, ordenamientos de las salidas con chicas, puede realizar antes de que se repita el mismo? La primera fecha de una serie cualquiera de tres, tiene tres posibilidades. Al haber salido con una de las chicas, le quedan dos alternativas en la serie para la segunda noche. Después de la segunda salida sólo le queda una alternativa. En total tiene 3 x 2 x 1 formas de colocar la secuencia de sus salidas en un solo grupo, después de seis grupos es probable que empiece a repetirse.
Una forma más común y menos intrigante, a través de la cual el ciudadano medio realiza extracciones de una bolsa, lo constituye la mesa de juego. Cuando se da la primera carta de una baraja de 52, hay 51 posibilidades restantes; cuando se da la segunda carta hay 50 posibilidades. En total el número de alternativas en que pueden distribuirse las cartas es 52 por 51, etc., y así descendiendo hasta 1. Para ahorrar espacio, los matemáticos lo escriben simplemente como un 52 seguido por un signo de admiración llamado «52 factorial». Cinco factorial (5!) significa 5 x 4 x 3 x 2 x 1, o sea, 120. Tres factorial (3!) significa 3 x 2 x 1, o sea 6.
4. El soltero más feliz
El jugador de póquer o de bridge se asemeja a nuestro mencionado soltero, a excepción de que el soltero lleva ahora una vida de complejidad celestial. Conoce a 52 chicas distintas y las escoge en grupos de cinco o 13. Si escoge en grupos de cinco, las posibilidades con que se enfrenta antes de cada elección son sucesivamente 52, 51, 50, 49 y 48 y el número total de ordenamientos de salidas posibles 52 x 51 x 50 x 49 x 48 o 52! / (52-5)!, en total 311.875.200 disposiciones distintas. Si escoge en grupos de 13 las colocaciones posibles se elevan a 52! / (52-13)!, que todavía es un número más monstruoso.
En el bridge o en el póquer un jugador no está interesado tanto en el número de secuencias que pueden darse en una mano como en el número posible de manos que resultan. En el póquer puede dar cinco cartas en 52!/(52-5)! formas, pero sólo 1/5! o 1/120 de estas formas tienen significado para él. Por lo tanto, el número total de manos que puede tener es 52! / ((52-5)! x (5!)), o 2.598.960.
De manera similar el número total de manos de bridge es 52! / ((52-12)! (13!)), en total 635,013,559,600. En general, el número de formas en que r objetos pueden sacarse de una bolsa de n objetos, prescindiendo de su colocación, es n! / r! (n-r)!

Aunque la probabilidad todavía conserva las huellas de sus orígenes deportivos, no todo son juegos de dados, de cartas, tiradas a cara o cruz. En sus formas más prácticas es el ingrediente principal de la ciencia de la estadística. Al aplicarse por medio de la estadística, da al estudiante bachillerato una idea de la realización en su futuro si va a la Universidad en vez de detenerse en el bachillerato; dice al soltero aproximadamente qué posibilidad tiene de vivir tanto como su hermano casado; dice al hermano qué posibilidad tiene de sobrevivir a su esposa. En los negocios, la probabilidad estadística se utiliza para estimar el stock que debería guardar un fabricante en sus almacenes. En las comunicaciones revela el número de conexiones - de combinaciones - que deben de hacerse en cualquier teléfono automático o red telegráfica. En la industria farmacéutica indica si los efectos que se indican de un nuevo producto son estadísticamente significativos o simplemente resultados de la casualidad.
Entre los juegos de azar y la mayor parte de estas aplicaciones más complejas y más útiles, que no tienen nada que ver con el juego, hay una diferencia fundamental. En el juego puede resultar difícil, pero siempre es posible, enumerar todos los resultados posibles de un riesgo: todos los billones de manos que pueden resultar de una baraja de cartas. Al predecir los altibajos de la vida real, no es muy posible conocer por adelantado todas las cartas de la baraja. En la probabilidad del juego, el matemático está considerando las posibilidades de las extracciones de una bolsa en la que la clase de bolas y sus proporciones relativas se conocen con anterioridad. En la probabilidad estadística, el problema es coger una muestra experimental bien seleccionada y después hacerle corresponder la probabilidad que con precisión represente todo el contenido de la bolsa.
Un instrumento básico que los matemáticos utilizan al investigar bolsas desconocidas es la curva que se ilustró más arriba. Ésta es la denominada curva de la «distribución normal», que representa lo que es normal o average en un número grande de casos observados. Una forma fácil de obtener la curva es tirar un número muy grande de veces un dado y después representar el número de veces que salen las combinaciones en relación con sus propios valores. La curva se convierte en una suave curva en forma de campana: la conocida curva C. I. o de clasificación, que se presenta en variedades innumerables en cualquier tipo de análisis estadístico.
La curva de probabilidad se reconoció y utilizó primeramente por el matemático Abraham de Moivre, un hugonote francés que había huido a Inglaterra después de la revocación del Edicto de Nantes en 1685.

Fue más desarrollada por la máxima autoridad matemática del siglo XIX, Carl Friedrich Gauss. Para representar la curva, Gauss escribió una ecuación que es de notoria utilidad al científico, ya que está construida en términos de los factores que intervienen en las situaciones experimentales. Si, por ejemplo, el científico desea saber cuál es la posibilidad de que las mediciones que ha hecho en un experimento sean, por una razón u otra, poco representativas y tal vez de poca confianza, la ecuación de Gauss le dice cuál es la posibilidad de que las mediciones estén mal en un 1 %, o en otro tanto por ciento. Como resultado el científico sabe «el límite de error probable» en su trabajo y puede actuar en consecuencia.
Desde la época de Gauss, los expertos de la probabilidad han elaborado otras ecuaciones y otras curvas para ciertas clases de situaciones no comprendidas por medio de la curva de distribución normal. Dichas situaciones, denominadas anormales, incluirían, por ejemplo, las posibilidades de marcar un número equivocado, o las posibilidades de que su casa resultara dañada durante un raid aéreo. La característica de juego persiste en estas aplicaciones sofisticadas de la posibilidad, pero han sido perfeccionadas para nuevos grados de utilidad y respetabilidad. En la actualidad la teoría de la probabilidad no es desconocida en las asignaturas de bachillerato. Y existe la esperanza de que los jóvenes que la absorben se conviertan, no precisamente en mejores jugadores de cartas, sino en mejores practicantes de los juegos de azar de los negocios, de la tecnología y de la ciencia.

Matemáticas David Bergamini Colección cientifica de Time-Life

No hay comentarios: