miércoles, 25 de septiembre de 2013

Colección cientifica de Time-Liffe Matemáticas 8 Las matemáticas en la actualidad: hechos, dudas, sueños

Las pruebas estelares de una teoría
La fotografía planetaria del lado opuesto simboliza la primera verificación de la Teoría General de la Relatividad de Einstein, un descubrimiento físico del siglo xx basado en la brillantez de las matemáticas del siglo xix. Durante el eclipse de 1919, que se reconstruye aquí, los científicos descubrieron que la luz de las estrellas se torcía cuando pasaba el sol, según predecía la Relatividad.




1. Las matemáticas en el siglo XX siguen creciendo sin fin.
El número de matemáticos, de unos 60.000 en 1972, ha aumentado en varios cientos desde 1900. Grandes empresas tales como IBM, Bell Telephone y General Electric, mantienen centros de investigación rodeados de césped, donde se paga a grupos de matemáticos para que piensen y nada más. En el Pentágono abundan los doctores en matemáticas. Los computadores electrónicos -esos esbirros de las matemáticas- se utilizan ahora en los centros vitales de la sociedad: en los centros de mando de los cohetes dirigidos y buques de guerra, en el Ministerio de Hacienda, en las oficinas de las líneas aéreas, en la Bolsa de Nueva York.

Las matemáticas, en síntesis, son el centro de la vida moderna. Nunca jamás, anteriormente, una torre de marfil proyectó, durante tanto tiempo, una sombra sobre la vida cotidiana. Al mismo tiempo, paradójicamente, sus iniciados no se han arrepentido de su afición por lo abstracto. Se han familiarizado con el abrupto y azulado horizonte jalonado por los matemáticos del siglo XIX. Y se asocian con abstracciones de abstracciones, «covariantes» y «contravariantes» «grupos de transformación» y números «transfinitos» «deformaciones discontinuas» y «espacios topológicos».
Estas excursiones en la pura fantasía matemática, aunque no parecen nada prácticas, tienen una forma peculiar de llevar la delantera a la ciencia física, de suministrar ecuaciones que se apliquen a los hechos antes que la ciencia halle los hechos que se apliquen a las ecuaciones. Esto ha sucedido tantas veces -y también ha fracasado en tantas otras- que muchos matemáticos se consideran a sí mismos como formuladores de posibilidades más bien que como descubridores de la verdad. La licencia impartida por esta visión del «arte por el arte» ha terminado en una pródiga inventiva. Los matemáticos de hoy en día se han desbocado de golpe en todas direcciones, haciendo conquistas con gran rapidez.
Los eruditos que han tratado de seguir esta agitada expansión nos aseguran que estamos viviendo en la Edad de Oro de las Matemáticas; estiman que en el último siglo se han creado casi tantas nuevas matemáticas como en todos los siglos anteriores juntos. Las estadísticas lo confirman. Según un reciente censo de las críticas en Revistas matemáticas, el número de trabajos publicados por matemáticos creadores se duplicó de 1940 a 1950, se duplicó de nuevo de 1950 a 1960, y volvió a duplicarse con exceso de 1960 a 1970; en otras palabras, aumentó un 800 por ciento en 30 años. Nicolás Bourbaki, seudónimo del supersabio que representa el esfuerzo colectivo de un grupo de intelectuales franceses, ha publicado casi 40 volúmenes de una enciclopedia sobre los fundamentos de las matemáticas modernas, y todavía no se ve el fin.
Tanto en alcance como en antigüedad, las matemáticas modernas desafían a la descripción fácil. En general, no obstante, se han desarrollado dentro de dos líneas: por un lado éxito y conquista -la habilidad para solucionar problemas-, por el otro investigaciones de espíritu y contemplación -una incertidumbre en lo referente a la naturaleza y, finalmente, las últimas abstracciones matemáticas.

Por el lado contemplativo, dos de los desarrollos más notables son la teoría de conjuntos y la lógica simbólica. La teoría de conjuntos, entre otras cosas, facilita un nuevo tipo de aritmética para el tratamiento del infinito, la lógica simbólica representa un intento de reducir todo el razonamiento matemático a una notación matemática. Tanto la teoría de conjuntos como la lógica simbólica se hallan estimuladas por una tercera forma de matemáticas, la teoría de los grupos, que desempeña un papel unificador en el análisis y revela asombrosas similitudes entre los distintos dominios matemáticos.

Entre sus principales conquistas, las matemáticas del siglo XX cuentan con dos reinos completos y nuevos: la teoría del juego y la topología. La teoría del juego es el análisis de la estrategia, bien sea en el apasionante juego de los negocios o en el frío juego de la guerra. La topología es el estudio de las propiedades de las formas geométricas que no varían cuando las propias formas se alargan, doblan o se ponen al revés.
De todos los triunfos de las matemáticas, el más espectacular ha sido la Relatividad, la cual, al preceder a nuestra era atómica, ha probado irrevocablemente el espantoso poder que las matemáticas pueden ejercer sobre la vida cotidiana. El creador de la Relatividad, Albert Einstein, llegó a ser una de las más grandes personalidades de nuestra época. Como tal contribuyó a unir la amplia distancia entre las matemáticas y el público.
La Teoría de la Relatividad, la obra maestra de Einstein, está en realidad formada por dos teorías: la Relatividad Especial y la Relatividad General, la primera publicada en 1905, la última en 1916. Ambas teorías están basadas en la premisa de que todas las mediciones científicas son relativas al marco de referencia del observador: que no hay ningún centro fijo en el cosmos para que los científicos empiecen, partiendo de éste, a medir distancias y a describir con precisión dónde y cuándo exactamente sucede cada cosa en el espacio.
En efecto, la Relatividad Especial constituye una forma nueva de escribir ecuaciones de la mecánica de Newton para corregir sus inadecuadas descripciones de la energía y de los objetos - galaxias distantes o partículas atómicas -, que se mueven casi a la velocidad de la luz, 300.000 km por segundo. La portentosa ecuación del poder nuclear,
E = m x c2
(que significa que la energía, E, en un pedazo de materia es igual a la masa, m, de la materia multiplicada por el cuadrado de la enorme velocidad de la luz, c) derivó de la Relatividad Especial como un corolario.
La Relatividad General perseguía el mismo fin que la Relatividad Especial, pero con una gran fuerza. En la Relatividad Especial, Einstein había examinado las leyes newtonianas de forma tal que fueran aplicables a los cuerpos que se mueven de prisa y que van a velocidades constantes a lo largo de líneas rectas. En la Relatividad General amplió sus ecuaciones de forma tal que fueran aplicables a los cuerpos que viajaban a velocidades cambiantes a lo largo de líneas curvas. Las así denominadas «ecuaciones de campo» de la Relatividad General no tan sólo abarcan todo estado posible de movimiento sino que también describen todo el comportamiento de nuestro universo y todos los universos imaginables.
Einstein pudo alcanzar dichas fórmulas sólo porque él adoptó las totalmente hipotéticas, aparentemente inútiles ideas de Riemann acerca del espacio geométrico curvo. Según Einstein el espacio real por donde andan los hombres y las estrellas buscan sus trayectorias es, en verdad, curvo. La evidencia de que el espacio es curvo cerca del sol empezó a acumularse casi de golpe después de la publicación de la Relatividad General. En 1919 los astrónomos que observaban los eclipses en sus viajes por el Brasil y el África Occidental hallaron que los rayos de luz estelar que pasaban cerca del borde del sol se doblaban ligeramente y, por lo tanto, hacían que sus progenitores estelares aparecieran ligeramente desplazados en el cielo. No mucho después, los descubrimientos astronómicos referentes a un progresivo cambio en la órbita de Mercurio y un enrojecimiento de luz en ciertas estrellas confirmaron también las ideas de Einstein en torno a la curvatura del espacio.
Para realizar sus sueños, Einstein dispuso la materia movible y la energía del cosmos dentro de un marco matemático de cuatro dimensiones tres para el espacio y una para el tiempo. Incluyó el tiempo, ya que había hallado en la Relatividad Especial que el tiempo y el espacio son inseparables, que el tiempo en que ocurre un suceso no es independiente del movimiento del observador. En las posteriores especulaciones de Einstein, materia y gravedad son manifestaciones una de la otra; así, puede considerarse que la materia es una infusión de la gravedad, cuya intensidad varía de un punto a otro. En la Teoría del Campo Unificado, Einstein intentó explicar las fuerzas eléctricas y magnéticas.
2. Una máquina cósmica del juego del millón
Es la presencia de la gravedad en la continuación lo que da lugar a la curvatura del espacio. El efecto es algo parecido al que crean los pequeños imanes situados debajo de la superficie de juego de algunas máquinas del millón. Cuando los imanes se desconectan, la superficie actúa como un plano inclinado, pero al encenderse, la superficie se comporta como si estuviera llena de colinas y valles. En la máquina cósmica del millón de Einstein, la materia y la energía desempeñan el papel de bolsas e imanes, siguiendo la forma del espacio a medida que se mueven.

(Los matemáticos insisten en que las descripciones de este tipo no deben tomarse demasiado literalmente. Cuán traidoras pueden ser queda ilustrado en una anécdota que se refiere a Einstein y un teórico ruso que disertaba sobre la Relatividad.

Queriendo simplificar, el ruso comparó una de sus ecuaciones «con una taza y un platillo en su vuelo en el espacio». En este punto, la historia prosigue, Einstein se puso en pie protestando, y después de un intercambio de ecuaciones con el ruso volvió a su asiento. Cuando hubo terminado, los oyentes se agruparon alrededor de Einstein deseando saber lo que había sucedido. «Esta situación que describía - explicó Einstein - dijo que era como una taza y un platillo, pero en realidad era como dos tazas y dos platillos en el espacio.»)
Al tratar de cuestiones difíciles del cosmos - o en realidad del átomo - las matemáticas abstractas han sido obligadas a una utilidad casi surrealista. Esto en sí mismo ha constituido una fuente de entretenimiento para los matemáticos, pero también una fuente de discusiones. ¿Cómo seguir creando más matemáticas del mismo alcance? ¿Cómo juzgar las líneas de análisis que se revelarán en el futuro?
Los matemáticos no conocen ninguna respuesta a este predicamento, algunos trabajan bajo el credo «Piense concretamente». Otros inventan por el placer de su arte solamente. En gran parte, la diferencia filosófica entre las dos escuelas tiene poca influencia en sus verdaderos métodos de trabajo. Ambas tratan de expresar sus creaciones en los términos más generales posibles, para marcar amplios aspectos de posibles problemas específicos. Y ambas tratan de evitar que las definiciones insípidas y los razonamientos defectuosos penetren furtivamente entre sus abstracciones, a las que no pueden aplicar los testes normales de la experiencia.
3. La forma de un sea lo que fuere
Para explorar los laberintos donde pueden agacharse los futuros gigantes del conocimiento, los matemáticos modernos iluminan su camino por medio de la teoría de los grupos y la lógica simbólica mencionada anteriormente. La teoría de los grupos y de los conjuntos, son utilizadas ambas para comparar los instrumentos de las distintas ramas de las matemáticas y para hacerlas todo lo intercambiables que sea posible. Un conjunto es una reunión cualquiera de entes. Un grupo es un tipo particular de conjunto de números, símbolos, puntos, líneas, movimientos, átomos, unidades de energía o un «sea lo que fuere» indefinido. Se distingue de cualquier otro viejo conjunto por tener que obedecer ciertas reglas con respecto a algunas operaciones tales como la suma y la multiplicación. Por ejemplo, la sucesión de dos miembros cualesquiera del conjunto cuando se combinan a través de la operación, debe de permanecer en el conjunto -el «4» producido por la unión del «2» y el «2» es también un número entero-. Además, cuando se combinan varios números de un conjunto, la forma en que están ordenados no debe afectar al resultado - por ejemplo, a(bc) debe ser igual (ab)c.
La teoría de los conjuntos fue desarrollada por el matemático alemán Georg Cantor como una técnica para «anatomizar el infinito». Durante el siglo XIX había habido continuos intentos para definir procesos infinitos tales como la diferenciación y la integración en términos de una aritmética simple. El sentimiento era que si todos los procesos y símbolos podían definirse así, habría menos dificultad para razonar con precisión sobre ellos. Como dijo un matemático, Leopold Kronecker : «Los números enteros son obra del buen Dios. Todo lo demás es obra del hombre».
Fue el triunfo de Cantor, en la teoría de los conjuntos, distinguir órdenes distintos de infinito en distintos conjuntos infinitos. Comparó los conjuntos infinitos al aparejar sus miembros, dos a dos, como los animales del arca de Noé. A través de este método aparentemente simple, alcanzó conclusiones sorprendentes. Por ejemplo, todas las fracciones pueden ser aparejadas con un conjunto infinito de números enteros. Los dos conjuntos infinitos son, por lo tanto, «iguales»; a pesar de esto, el conjunto de todas las fracciones incluye el conjunto de todos los números en virtud de términos tales como 2/1 ó 6/2, en otras palabras, aunque los dos conjuntos son iguales, uno contiene al otro como un «subconjunto». A través de la misma técnica, Cantor averiguó que otras series infinitas - todos los puntos en la línea de un segmento, por ejemplo, no pueden aparejarse con los números enteros. En pocas palabras, no pueden contarse. Cantor halló otros órdenes de infinito - otros «números transfinitos» que todavía son más infinitos -. Creó una aritmética para tratar dichos conjuntos infinitos - un arma tal con la que los matemáticos podían dividir su antiguo mito en torno al infinito en varias fases lógicas.
Aunque los conjuntos son más inclusivos que los grupos, la teoría de los grupos ha sido denominada el arte supremo de la abstracción matemática.

Su principal pionero fue un trágico joven francés del siglo XIX, Evariste Galois. El pobre Galois preparó la teoría de los grupos para las ecuaciones. Guardó el contenido de la obra de su vida en un documento de treinta y una páginas casi ininteligibles, escrito de prisa en la última noche de su vida, cuando sólo tenía veinte años. A la mañana siguiente murió en un duelo por causas políticas y una chica que apenas conocía.
La teoría de los grupos llega al fondo de lo que sucede cuando se efectúa un tipo de operación matemática con distintos elementos, o cuando se realizan sucesivamente diferentes operaciones con un elemento unitario. A través de este análisis deja al descubierto modelos estructurales básicos de las matemáticas. Un innovador agobiado por las dificultades puede algunas veces utilizar la teoría de los grupos para pasar a otras ramas de las matemáticas y poder seguir adelante con su obra. La teoría también ayuda a los científicos cuando observan modelos oscuros por naturaleza. Se ha utilizado, por ejemplo, para analizar configuraciones de moléculas y cristales - disposiciones importantes en la química de los genes humanos o en los «sólidos circuitos» de la electrónica moderna.

Todo tipo de objetos matemáticos se comporta como grupo. Por ejemplo, un triángulo equilátero puede descansar sobre cualquiera de sus tres lados y continuar pareciendo lo mismo. Las rotaciones a que da lugar el triángulo, desde una de estas posiciones a la otra constituye un grupo.
Lo que es más, este grupo tiene una contrapartida estructural en un cierto grupo de permutaciones y en un grupo formado por las soluciones de una ecuación cúbica determinada. Los tres grupos son realizaciones de un solo «grupo abstracto». Por lo tanto, el mismo grupo abstracto abarca casos referentes a tres reinos distintos, la geometría, la aritmética de las disposiciones y el álgebra.
Los hábiles cambios que realiza la teoría de los grupos en un tipo de creación matemática para transformarlo en algún otro tipo distinto se conocen por «transformaciones». Una ecuación algebraica se transforma cuando, por ejemplo, toda x en ésta es reemplazada por una y - 5. Una figura geométrica en un plano se transforma cuando se alarga o cuando se proyecta su sombra en una superficie distinta o en un tipo distinto de espacio. Fue un grupo de transformaciones algebraicas, ideado por un físico holandés, Hendrik A. Lorentz, para tratar diversos problemas de electricidad, el que utilizó Einstein para construir su Relatividad Especial.
Durante las transformaciones, algún aspecto de una ecuación o de una forma geométrica puede permanecer obstinadamente inalterado. Estas sólidas islas se denominan «invariantes». Puede que no sean más perceptibles que el centelleo invariante en el ojo de un actor de una compañía de teatro, pero los matemáticos los buscan y se aferran a ellos. Una idea de su importancia se puede obtener de una definición de la teoría de los grupos de la geometría como «el estudio de las invariantes de las configuraciones geométricas bajo grupos de transformaciones».
La más introspectiva de las súper matemáticas que ayudan a los analistas del siglo XX a hallar su sendero, es la lógica simbólica: una notación para señalar y manipular todo tipo de proposiciones para llevar a los sequiturs y a los nosequiturs a una revelación extremadamente despiadada. A través de la lógica simbólica - cuyas manifestaciones pueden probarse en el extracto de Lewis Carroll- los matemáticos se han propuesto una tarea ímproba: clasificar y analizar los pensamientos que se hallan comprendidos en cada rama de las matemáticas, con el propósito de identificar los axiomas y procedimientos que cada uno tiene por base y de reducir todas las pruebas posibles a los esqueletos más simples. Por medio de este plan los resultados deberían ser absolutamente abstractos y sus proposiciones lo más abreviadas posible, tales como «si se supone el axioma A entonces se desprende el teorema B», que en una trascripción en lógica simbólica se escribiría así
A ⊃ B,
o «si se supone A o B entonces resulta el negativo de C», se escribiría así:
A ∨ B ⊃ ~ C.
Se han realizado varios esfuerzos monumentales para traducir todo el razonamiento matemático en dicha abreviación, en especial los tres tomos de símbolos de la Principia Mathematica, publicados por Alfred North Whitehead y Bertran Russell entre 1910 y 1913.
La lógica simbólica ha producido uno de los teoremas más curiosos e influyentes de todas las matemáticas modernas. Esta es la demostración de Gödel, una línea de razonamiento extremadamente abstracta que muestra que no puede construirse ninguna rama útil de las matemáticas sobre un conjunto consistente de axiomas sin suscitarse problemas sin solución dentro del marco de los propios axiomas. Es como si alguna propiedad estructural de un triángulo rectángulo jamás pudiera verificarse por medio de los axiomas euclidianos que condujeron a la formulación del teorema de Pitágoras. Para la aritmética, la demostración de Gódel muestra que todas las relaciones posibles entre los números enteros no pueden deducirse de ningún conjunto de supuestos básicos. Las relaciones posibles o «verdades» acerca de los números son tan ilimitadas como el propio desfile de números. Para las matemáticas en conjunto, la implicación es que la disciplina nunca será completa.
Kurt Gödel - en la actualidad miembro del Instituto para Estudios Superiores en Princeton - elaboró su notable teorema en 1931 a la edad de 25 años. Lo demostró a través de lo que denomina «una prueba de existencia», un tema que demuestra que algo existe sin producir necesariamente ese algo para su inspección. El teorema de Gödel se toma o con antipatía o con alborozo. Los que están más afectados son los matemáticos «formalistas». Los más contentos son los de espíritu libre que no puede soportar el pensamiento de que las matemáticas pudieran jamás estar bien esquematizadas. Entre éstos uno de los más famosos fue John von Neumann, que desempeñó un papel primordial en el desarrollo de la bomba atómica. Von Neumann en cierta ocasión dijo «Gran parte de la inspiración matemática proviene de la experiencia y apenas es posible creer en la existencia de un concepto absolutamente inmutable del rigor matemático disociado de toda experiencia humana».

4. Acercamiento a un adversario cambiante
Una de las principales contribuciones de Von Neumann, la teoría de los juegos, es uno de los desarrollos más prácticos de nuestra época. Propugna complicadas leyes de estrategia: cómo adoptar las mejores variaciones en el juego para evitar la derrota ante un adversario cambiante; cómo sacar el mejor partido de una mala situación o evitar lo peor de una buena, al enfrentarse con un competidor muy racional y analítico.
La teoría de los juegos ha sido utilizada en una gama de aplicaciones. Ha contribuido a determinar el espacio de tiempo más ventajoso que debiera observar una empresa de discos entre la presentación al público de dos grabaciones de éxito segurb; ha sido utilizada en un contrato «cielo-azul» o «piense» propuesto, no hace mucho tiempo, por la Oficina de Investigación Naval americana. En un juego que no ofrece ninguna perspectiva clara de ganar, la teoría de los juegos puede mostrar cómo hallar la estrategia que se acercará más para conseguir tablas.

Como resultado de esto la idea de la minimización de las máximas pérdidas - denominados «mini máximos» o «puntos de silla» de Von Neumann - ha sido utilizada por ambos lados en la guerra fría, y puede contribuir al retraso indefinido de la tercera guerra mundial.
Entre la difícil lógica abstracta de los formalistas y las igualmente difíciles teorías de los adeptos de Von Neumann en las matemáticas modernas, se encuentra la sombra de los computadores electrónicos de gran velocidad. Diariamente, partiendo de elegantes fórmulas, se traducen las matemáticas en prosaicas hojas de instrucciones que los computadores digieren por medio de la fuerza mecánica bruta. Un computador puede solucionar problemas que dejarían a un Newton o a un Gauss con la boca abierta, y solucionarlos con un número cualquiera de decimales, por medio de esquemas de aproximación puramente pragmáticos.
Mientras tanto los matemáticos puros van ascendiendo cada vez más arriba hacia nuevos cielos de abstracción. Lo que están alcanzando nadie de nosotros lo sabe realmente, ya que los equivalentes de la Relatividad y la energía atómica -que pueden salir a partir de las matemáticas actuales puede ser que no se comprendan durante varias décadas.
En lo que al propio futuro se refiere, está bien descrito por André Weil, uno de los colaboradores franceses en la obra de Bourbaki : «El gran matemático del futuro, así como el del pasado, huirá del camino muy trillado. Es gracias a inesperados rapprochements, que nuestra imaginación no hubiera sabido cómo llegar hasta ellos, que él solucionará, al darles otro giro, los grandes problemas que le dejaremos como legado».

Matemáticas David Bergamini Colección cientifica de Time-Life

1 comentario:

David dijo...

Por suerte en internet encontramos muchas cosas a nivel educativo y es clave para mejorar la performance de nuestros hijos. En este momento quería ayudar a mis hijos con el teorema de tales para que mejoren en esta materia