sábado, 4 de enero de 2014

¿Es Dios un Matemático? Mario Livio 2009 Capitulo IX: Acerca de la matemática, la mente humana y el universo.

Las dos preguntas: (i) ¿Tiene la matemática una existencia independiente de la mente humana?, y (ii) ¿Por qué los conceptos matemáticos son aplicables mucho más allá del contexto en el que se desarrollaron originalmente?, están relacionadas entre sí por caminos complejos. Pero, para simplificar el comentario, voy a intentar encararlas una tras otra.
En primer lugar podemos preguntarnos cuál es la posición de los matemáticos actuales sobre la cuestión de si la matemática es un descubrimiento o un invento. En su espléndido libro The Mathematical Experience, los matemáticos Philip Davis y Reuben Hersh describen la situación del siguiente modo:[254] «La mayor parte de los autores parecen estar de acuerdo en que un matemático típico es platónico (es decir, opina que es un descubrimiento) los días laborables y un formalista (es decir, piensa que es un invento) los domingos. Esto es, cuando el matemático está haciendo matemática, está convencido de que trata con una realidad objetiva cuyas propiedades intenta determinar. En cambio, si se le obliga a dar una versión filosófica de esta realidad, prefiere fingir que, después de todo, no cree en ella».
Aparte de la tentación de hablar de «los matemáticos y las matemáticas» para reflejar los cambios demográficos en la disciplina, tengo la impresión de que esta caracterización sigue siendo cierta para muchos de los actuales matemáticos y físicos teóricos. Sin embargo, algunos matemáticos del siglo XX tomaron un claro partido por una u otra postura. En representación del punto de vista platónico tenemos a G. H. Hardy, que afirma en A Mathematician's Apology:[255]
Para mí, y supongo que para la mayoría de los matemáticos, existe otra realidad, a la que llamaré «realidad matemática», y no existe acuerdo alguno acerca de la naturaleza de esta realidad, ni entre los matemáticos ni entre los filósofos. Algunos sostienen que se trata de algo «mental» y que, en cierto sentido, la construimos nosotros; otros opinan que es externa e independiente de nosotros. Si alguien pudiese dar cuenta de la realidad matemática de una forma convincente habría resuelto un gran número de los problemas metafísicos más complejos. Si pudiese incluir la realidad física en su explicación, los habría resuelto todos.
No es mi intención discutir aquí ninguna de estas cuestiones, ni siquiera en el supuesto de que tuviese la competencia para ello, pero, para evitar malentendidos, expondré mi postura de forma dogmática. Creo que la realidad matemática reside fuera de nosotros, que nuestra función es descubrirla y observarla, y que los teoremas que demostramos y que, pecando de grandilocuencia, denominamos «nuestras creaciones», son simples anotaciones de nuestras observaciones. Este ha sido, de uno u otro modo, el punto de vista sostenido por numerosos y reputados filósofos empezando por Platón, y a partir de ahora utilizaré el lenguaje natural de una persona que es partidaria de él.
Los matemáticos Edward Kasner (1878-1955) y James Newman (1907-1966) expresaban justamente la postura contraría en Mathematics and the Imagination:[256]
No es sorprendente que el prestigio de la matemática no tenga parangón en ningún otro campo del pensamiento intencional; el número de avances científicos que ha hecho posible hacen que sea a un tiempo indispensable desde un punto de vista práctico y la obra cumbre de la abstracción pura, de modo que el reconocimiento de su papel destacado entre las hazañas intelectuales de la humanidad no es ni más ni menos que el reconocimiento de un mérito real.
Pero, a pesar de esta preeminencia, la primera valoración significativa de la matemática tuvo lugar recientemente, con la aparición de la geometría no euclidiana y la geometría tetradimensional. Eso no significa que se deban minimizar los avances efectuados en el cálculo, la teoría de probabilidades, la aritmética del infinito, la topología y otras ramas que hemos comentado. Cada uno de estos avances ha ampliado la visión de la matemática y profundizado en su significado, así como en nuestra comprensión del universo físico. Sin embargo, ninguno de ellos ha contribuido a la introspección matemática, al conocimiento de las relaciones entre las distintas partes de la disciplina entre sí y con el conjunto en mayor medida que las herejías no euclidianas.
El coraje del espíritu crítico que se halla en la génesis de estas herejías nos ha permitido superar la noción de que las verdades matemáticas tienen una existencia independiente externa a nuestras mentes. Ahora incluso nos parece extraño que tal noción pudiese haber existido. Y sin embargo, es lo que hubiesen creído Pitágoras, Descartes y cientos de otros grandes matemáticos antes del siglo XIX. En la actualidad, la matemática ha roto sus cadenas y se ha liberado de sus fronteras. Sea cual sea su esencia, ahora reconocemos que es tan libre como la mente y tan indómita como la imaginación. La geometría no euclidiana demuestra que la matemática, a diferencia de la música de las esferas, es obra de la mano del hombre y está sujeta únicamente a las limitaciones que le imponen las leyes del pensamiento.
Vemos aquí, en contraste con la precisión y la certeza que caracterizan las afirmaciones matemáticas, una divergencia de opiniones más propia de los debates filosóficos o políticos. Pero esto no debería sorprendernos. La cuestión de si la matemática es inventada o descubierta no es, en realidad, una cuestión matemática.
La noción de «descubrimiento» implica una existencia previa en algún universo, ya sea real o metafísico. El concepto de «invento» implica a la mente humana, ya sea de forma individual o colectiva. Entonces, la pregunta está relacionada con una combinación de disciplinas entre las que pueden hallarse la física, la filosofía, la matemática, la ciencia cognitiva e incluso la antropología, pero desde luego no es exclusiva la matemática (o, al menos, no de forma directa). En consecuencia, es posible que no sean los matemáticos los que mejor puedan responderla. Después de todo, aunque los poetas pueden hacer magia con las palabras, posiblemente no sean los mejores lingüistas, del mismo modo que los filósofos más profundos no suelen ser expertos en las funciones del cerebro. La respuesta a la cuestión «inventada o descubierta» sólo puede proceder (si es que realmente es posible hallarla) de un cuidadoso examen de numerosas claves procedentes de una amplia variedad de disciplinas.

 Metafísica, física y cognición

 

 

Los que creen que la matemática existe en un universo independiente de los humanos pueden aún dividirse en dos tipos en lo que respecta a la identificación de la naturaleza de este universo.[257] En primer lugar se encuentran los «verdaderos» platónicos, para los que la matemática reside en un mundo eterno y abstracto de formas matemáticas. Luego están los que sugieren que las estructuras matemáticas son una parte real del mundo natural. Ya hemos tratado el platonismo puro y algunas de sus limitaciones filosóficas con cierta amplitud, de modo que voy a entrar en detalles acerca de la otra perspectiva.[258]
Quizá la persona que abogue por la versión más extrema y especulativa de la tesis de «la matemática como parte del mundo físico» sea un compañero astrofísico, Max Tegmark del Massachussets Institute of Technology.
Tegmark sostiene que «nuestro universo no sólo se describe mediante la matemática, sino que es matemática» (la cursiva es mía).[259] Su argumento empieza por la hipótesis no especialmente polémica de que existe una realidad física externa independiente de los seres humanos. A continuación pasa a examinar cuál podría ser la naturaleza de una teoría que englobase dicha realidad (lo que los físicos llaman una «Teoría de todo»). Al ser este mundo físico totalmente independiente de los humanos, sigue Tegmark, su descripción debe estar libre de cualquier «carga» humana (en particular, el lenguaje humano). En otras palabras, la teoría definitiva no puede incluir conceptos tales como «partículas subatómicas», «cuerdas vibratorias», «deformación del espacio-tiempo» u otros constructos concebidos por el hombre. Partiendo de esta base, Tegmark llega a la conclusión de que la única descripción posible del cosmos implica únicamente conceptos abstractos y relaciones entre ellos, lo que para él constituye la definición operativa de la matemática.
El argumento de Tegmark para una realidad matemática es realmente fascinante y, en el caso de resultar cierto, supondría un avance crucial hacia la solución del problema de la «inexplicable eficacia» de la matemática. En un universo identificado con la matemática, el hecho de que esta disciplina se ajuste como un guante al comportamiento de la naturaleza no puede resultar sorprendente. Por desgracia, en mi opinión el razonamiento de Tegmark no es especialmente persuasivo. El salto de la existencia de la realidad externa (independiente de los seres humanos) a la conclusión de que, en palabras de Tegmark, «es necesario creer en lo que yo denomino la hipótesis del universo matemático: que nuestra realidad física es una estructura matemática», implica, en mi opinión, un juego de prestidigitación. Tegmark intenta caracterizar lo que realmente es la matemática con estas palabras: «Para el lógico moderno, una estructura matemática es precisamente un conjunto de entidades abstractas y las relaciones entre ellas». ¡Pero este lógico moderno es humano! En otras palabras, Tegmark no demuestra en ningún momento que nuestra matemática no ha sido inventada por los seres humanos, sino que se limita a darlo por sentado. Además, tal como señala el neurobiólogo francés Jean-Pierre Changeux en respuesta a una tesis similar: «Afirmar la realidad física de los objetos matemáticos en el mismo nivel que los fenómenos naturales que se estudian en biología plantea, en mi opinión, un considerable problema epistemológico. ¿Cómo puede un estado físico interno de nuestro cerebro representar otro estado físico externo a él?».[260]
Otros intentos de situar los objetos matemáticos en la realidad física externa se apoyan simplemente en la eficacia de la matemática para explicar la naturaleza. Pero en estos casos se supone que no es posible ninguna otra explicación de la eficacia de la matemática, lo que, como mostraré más adelante, es falso.
Si la matemática no reside en el mundo platónico, fuera del espacio y del tiempo, ni en el mundo físico, ¿significa que es únicamente un invento de los seres humanos? Por supuesto que no. De hecho, mi razonamiento en la próxima sección será que la mayoría de la matemática consiste en descubrimiento. Pero, antes de avanzar más allá, será útil examinar las opiniones de los científicos cognitivos contemporáneos. El motivo es que, aunque la matemática consistiese únicamente en descubrimientos, serían de todos modos descubrimientos llevados a cabo por matemáticos humanos utilizando sus cerebros.
Con el fabuloso avance de las ciencias cognitivas en los últimos años, era lógico pensar que los neurobiólogos y los psicólogos prestasen atención a la matemática y, específicamente, a la búsqueda de los fundamentos de la matemática en la cognición humana. Un somero repaso a las conclusiones de la mayor parte de científicos cognitivos puede traer a la mente la frase de Mark Twain: «Si un hombre empuña un martillo, todo le parece un clavo». Salvo por pequeñas variaciones en el énfasis, prácticamente todos los neuropsicólogos y biólogos determinan que la matemática es un invento humano. Sin embargo, al prestar una mayor atención a los detalles, se aprecia que, a pesar de que la interpretación de los datos cognitivos es más bien ambigua, no hay duda de que el punto de vista cognitivo representa una fase nueva y pionera en la búsqueda de los fundamentos de la matemática. He aquí una pequeña pero representativa muestra de los comentarios de los científicos cognitivos.
El neurocientífico francés Stanislas Dehaene, cuyo principal interés es la cognición de los números, concluía en su libro de 1997 The Number Sense: «La intuición de los número está profundamente implantada en nuestro cerebro».[261] Esta postura es, de hecho, próxima a la de los intuicionistas, que pretendían basar toda la matemática en la forma pura de la intuición de los números naturales. Dehaene razona que los descubrimientos efectuados en psicología acerca de la aritmética confirman que «el número forma parte de los objetos naturales del pensamiento, las categorías innatas mediante las cuales percibimos el mundo».
A partir de otro estudio llevado a cabo con los Mundurukú (un grupo indígena amazónico completamente aislado), Dehaene y sus colaboradores agregaron un juicio similar acerca de la geometría en 2006: «La comprensión espontánea de los conceptos geométricos y de los mapas por parte de esta remota comunidad humana ofrece pruebas de que los conocimientos geométricos fundamentales, igual que la aritmética básica, son constituyentes universales de la mente humana».[262] Pero no todos los científicos cognitivos están de acuerdo con estas conclusiones.[263] Algunos señalan, por ejemplo, que el éxito obtenido por los Mundurukú en el reciente estudio geométrico, en el que tenían que identificar una curva entre líneas rectas, un rectángulo entre cuadrados, una elipse entre círculos, etc., podría tener más relación con su capacidad visual para distinguir un objeto distinto entre otros iguales que un conocimiento geométrico innato.
El neurobiólogo francés Jean-Pierre Changeux, en un fascinante diálogo acerca de la naturaleza de la matemática con el matemático (de sensibilidad platónica) Alain Connes, publicado en Conversations on Mind, Matter, and Mathematics observaba lo siguiente:[264] «La razón de que los objetos matemáticos no tienen nada que ver con el mundo perceptible tiene que ver … con su carácter generativo, su capacidad de dar origen a otros objetos. Es necesario destacar aquí que existe en el cerebro lo que podríamos llamar un “compartimiento consciente”, una especie de espacio físico para la simulación y creación de nuevos objetos … En algunos sentidos, estos nuevos objetos matemáticos se comportan como seres vivos: como los seres vivos, son objetos físicos susceptibles de evolucionar de forma muy rápida; a diferencia de los seres vivos, con la excepción específica de los virus, evolucionan en nuestro cerebro».
Finalmente, la afirmación más categórica en el debate de invención contra descubrimiento la efectuaron el lingüista cognitivo George Lakoff y el psicólogo Rafael Núñez en su controvertido libro Where Mathematics Comes From, en el que declaraban:[265]
La matemática es una parte natural de nuestra condición humana; surge de nuestro cuerpo, de nuestro cerebro y de nuestra experiencia cotidiana del mundo. (Lakoff y Núñez hablan pues de la matemática como algo que surge de una «mente encarnada») … La matemática es un sistema de conceptos humanos que utiliza de forma extraordinaria las herramientas ordinarias de la cognición humana … Los seres humanos somos los responsables de la creación de la matemática, y de su conservación y ampliación. El retrato de la matemática tiene rostro humano.
Los científicos cognitivos basan sus conclusiones en lo que consideran una persuasiva abundancia de pruebas que son el resultado de numerosos experimentos. Algunas de estas pruebas incluyen estudios con imágenes funcionales del cerebro durante la realización de tareas matemáticas. Otros han examinado la competencia matemática de niños, de grupos de cazadores-recolectores que no han sufrido escolarización, como los Mundurukú, y de personas con diversos grados de daños cerebrales. Casi todos los investigadores están de acuerdo en que algunas capacidades matemáticas parecen ser innatas. Por ejemplo, todos los humanos son capaces de apreciar de un vistazo si están viendo uno, dos o tres objetos (esta capacidad se denomina subitizar). Una versión muy limitada de la aritmética (las operaciones de agrupar, emparejar y adiciones y sustracciones muy simples) podría también ser innata, del mismo modo que una comprensión muy básica de los conceptos geométricos (aunque esta última afirmación es más polémica). Los neurocientíficos han identificado también regiones del cerebro, como el giro angular en el hemisferio izquierdo,[266] que parecen ser esenciales para la manipulación de números y cálculos matemáticos, pero que no son esenciales para el lenguaje ni para la memoria operativa.
Según Lakoff y Núñez, una de las principales herramientas para el avance más allá de las habilidades innatas es la construcción de metáforas conceptuales mediante procesos que traducen conceptos a otros más concretos. Por ejemplo, la concepción de la aritmética se fundamenta en una metáfora básica, la de la recolección de objetos. Por otra parte, el álgebra de clases de Boole, más abstracta, vinculaba de forma metafórica clases a números. El elaborado escenario desarrollado por Lakoff y Núñez ofrece puntos de vista interesantes sobre las razones por las que los seres humanos encuentran algunos conceptos matemáticos mucho más difíciles que otros. Otros investigadores, como la neurocientífica cognitiva Rosemary Varley de la Universidad de Sheffield,[267] sugieren que como mínimo algunas estructuras matemáticas parasitan la facultad del lenguaje, es decir, las capacidades matemáticas se desarrollan a partir de las herramientas mentales utilizadas para construir el lenguaje.
Los científicos cognitivos abogan claramente por una asociación de nuestra matemática con la mente humana y se oponen al platonismo. De todos modos, es interesante apreciar que el argumento, en mi opinión, más claro contra el platonismo no viene de la neurobiología, sino de sir Michael Atiyah, uno de los matemáticos más insignes del siglo XX. De hecho, ya mencioné su línea de razonamiento en el capítulo 1, pero ahora me gustaría presentarla con mayor detalle.
Si tuviese que elegir el concepto de nuestra matemática con mayor probabilidad de existir de forma independiente de la mente humana, ¿cuál elegiría? La mayor parte de las personas llegarían posiblemente a la conclusión de que deben ser los números naturales. ¿Qué puede haber más «natural» que 1, 2, 3…? Incluso el matemático alemán Leopold Kronecker (1823-1891), de tendencia intuicionista, declaró: «Dios creó los números naturales. Todo lo demás es obra del hombre». Así, si se pudiese demostrar que incluso el concepto de número natural tiene su origen en la mente humana, representaría un gran avance en favor del paradigma del «invento». Atiyah expone de este modo sus argumentos como ya vimos: «Pero imaginemos que la inteligencia no se hubiese desarrollado en el hombre, sino en una especie de medusa colosal, solitaria y aislada en los abismos del océano Pacífico. Este ente no tendría experiencia alguna de los objetos individuales, ya que sólo estaría rodeado de agua. Sus datos sensoriales básicos se reducirían a movimiento, temperatura y presión. En este continuo puro, el concepto de discreto no podría surgir ni, por consiguiente, habría nada que contar».[268] En otras palabras, Atiyah está convencido de que incluso algo tan básico como el concepto de número natural ha sido creado por los seres humanos mediante la abstracción (o, como dirían los científicos cognitivos, a través de metáforas primarias) de elementos del mundo físico. Dicho de otro modo, el número 12, por ejemplo, representa una abstracción común a todos los objetos que van agrupados en docenas, de la misma forma que la palabra «pensamientos» representa una diversidad de procesos que tienen lugar en nuestro cerebro.
El lector puede poner objeciones al uso como prueba del universo hipotético de la medusa, argumentando que sólo existe un único universo inevitable y que cada suposición debe examinarse en el contexto de este universo. Sin embargo, esto sería equivalente a admitir que el concepto de número natural depende de algún modo del universo de experiencias humanas. Obsérvese que Lakoff y Núñez se referían precisamente a esto cuando hablaban de la matemática como algo «encarnado».
Hasta ahora he argumentado que los conceptos de nuestra matemática tienen su origen en la mente humana, y quizá se pregunte por qué había insistido anteriormente en que gran parte de la matemática es, de hecho, descubierta, lo que parece estar más próximo al platonismo.

 Invento y descubrimiento

En el lenguaje cotidiano, la distinción entre invento y descubrimiento es en ocasiones de una claridad meridiana, mientras que en otras es algo más borroso. Nadie diría que Shakespeare descubrió Hamlet ni que Madame Curie inventó el radio. Al mismo tiempo, los nuevos fármacos para el tratamiento de ciertas enfermedades se suelen anunciar como descubrimientos, a pesar de que con frecuencia implican la meticulosa síntesis de nuevos compuestos químicos. Me gustaría describir en cierto detalle un ejemplo matemático muy específico que ayudará, no sólo a aclarar la diferencia entre invento y descubrimiento, sino que ofrecerá también valiosa información sobre los procesos de evolución y progreso de la matemática.

En el Libro VI de los Elementos, la monumental obra de Euclides sobre geometría, hay una definición de cierta división de una línea en dos partes desiguales (el Libro II contiene otra definición, en términos de áreas). Según Euclides, si una línea AB se divide mediante un punto C de tal modo (figura 62) que la relación entre las longitudes de los dos segmentos (AC/CB) sea igual a la de la línea dividida por el segmento más largo (AB/AC), se dice que la línea se ha dividido en «extrema y media razón».
Dicho de otra forma, si AC/CB = AB/AC, cada una de estas proporciones se denomina «razón extrema y media». Desde el siglo XIX, esta razón se denomina popularmente Razón áurea.[269] Basta un poco de álgebra básica para hallar que la razón áurea es igual a (1 + √5)/2 = 1,6180339887…
La primera pregunta que uno puede plantearse es por qué Euclides se tomó el trabajo de definir esta división en especial y asignar un nombre a la razón. Después de todo, una línea se puede dividir de infinitas formas. La respuesta a esta pregunta se halla en la herencia cultural y mística de los pitagóricos y de Platón. Recordemos que los pitagóricos estaban obsesionados por los números. Pensaban que los números impares eran masculinos y buenos y, mostrando un cierto prejuicio, que los pares eran femeninos y malos. Tenían una afinidad especial por el número 5, la unión del 2 y del 3, el primer número par (femenino) y el primero impar (masculino). (El número 1 no se consideraba un número, sino el generador de todos los números). Así, para los pitagóricos, el número 5 representaba el amor y el matrimonio, y utilizaban el pentagrama (la estrella de cinco puntas de la figura 63) como símbolo de su hermandad.

Y aquí es donde hace su aparición por primera vez la razón áurea. Si se toma un pentagrama regular, la razón entre el lado de cualquiera de los triángulos y su base implícita (a/b en la figura 63) es precisamente igual a la razón áurea. De forma similar, la razón entre cualquiera de las diagonales de un pentágono regular y su lado (c/d en la figura 64) es también igual a la razón áurea.
De hecho, para construir un pentágono con una regla y un compás (el proceso habitual de construcción geométrica para los antiguos griegos) es necesario dividir una línea según la razón áurea.
Platón agregó un nuevo aspecto al significado mítico de la razón áurea. Los antiguos griegos creían que todo el universo se componía de cuatro elementos: tierra, fuego, aire y agua. En Timeo, Platón intentaba explicar la estructura de la materia utilizando los cinco sólidos regulares que actualmente llevan su nombre, los sólidos platónicos (figura 65).

Estos sólidos convexos (el tetraedro, el cubo, el octaedro, el dodecaedro y el icosaedro) son los únicos cuyas caras son polígonos regulares iguales (en cada sólido) y cuyos vértices se hallan sobre una esfera. Platón asoció cuatro de los sólidos con los cuatro elementos cósmicos básicos. Por ejemplo, la Tierra estaba asociada con el estable cubo, el penetrante fuego con el puntiagudo tetraedro, el aire con el octaedro y el agua con el icosaedro. Acerca del dodecaedro (figura 65 (d)), Platón escribía en Timeo: «Quedando una sola figura compuesta, la quinta, Dios la utilizó para el Todo, y la bordó con motivos y dibujos». Así, el dodecaedro representaba el universo en su conjunto. Vale la pena observar que la razón áurea es parte indisoluble del dodecaedro, con sus doce caras pentagonales. Tanto su volumen como su superficie pueden expresarse en función de la razón áurea de forma simple (también en el caso del icosaedro).
Así, la historia nos enseña que, a base de muchos ensayos y errores, los pitagóricos y sus seguidores descubrieron formas de construir ciertas figuras geométricas que representan conceptos importantes desde su perspectiva, como el amor y el cosmos en su conjunto. No es sorprendente que, junto con Euclides (que documentó esta tradición) inventasen el concepto de razón áurea, relacionado con estas construcciones, y lo nombrasen. A diferencia de cualquier otra razón arbitraria, el número 1,618… se convirtió en el foco de una intensa investigación a lo largo de la historia, y en la actualidad sigue apareciendo en los lugares más insospechados. Por ejemplo, dos milenios después de Euclides, el astrónomo alemán Johannes Kepler descubrió que este número aparece, de forma casi milagrosa, en relación con una secuencia numérica denominada serie de Fibonacci. La característica de la serie de Fibonacci (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233…) es que, a partir del tercero, cada número es la suma de los dos anteriores (esto es: 2 = 1 + 1; 3 = 1 + 2; 5 = 2 + 3; etc.). Al dividir cada número de la serie por el inmediatamente anterior (por ejemplo, 144/89; 233/144 …), se halla que los cocientes oscilan, pero se van aproximando a la razón áurea al avanzar en la secuencia. Por ejemplo (redondeando al sexto decimal): 144/89 = 1,617978; 233/144 = 1,618056; 377/233 = 1,618026, etc.
En épocas más modernas, la serie de Fibonacci (y, junto a ella, la razón áurea) se han hallado en la disposición de las hojas de algunas plantas (un fenómeno denominado filotaxis) y en la estructura de los cristales de ciertas aleaciones de aluminio.
¿Por qué considero que la definición de Euclides del concepto de razón áurea es un invento? Porque la inventiva de Euclides señaló esta razón en particular y atrajo a ella la atención de los matemáticos. Por otro lado, en China, donde el concepto de razón áurea no se había inventado, la literatura matemática no contenía esencialmente referencia alguna a ella. En la India, en donde tampoco se había inventado el concepto, la razón áurea aparece de forma lateral únicamente en algunos insignificantes teoremas de trigonometría.
Se pueden hallar numerosos ejemplos para demostrar que la pregunta «La matemática ¿es descubierta o inventada?» está mal planteada. Nuestra matemática es una combinación de inventos y descubrimientos. Los axiomas de la geometría euclidiana como concepto fueron un invento, del mismo modo que lo fueron las reglas del ajedrez. Los axiomas fueron complementados asimismo por otros diversos conceptos inventados, como triángulos, paralelogramos, elipses, la razón áurea y otros. Por otro lado, los teoremas de la geometría euclidiana fueron en su mayor parte descubrimientos; se trataba de los caminos que vinculaban entre sí los distintos conceptos. En algunos casos, las demostraciones generaron los teoremas: los matemáticos examinaban lo que podían demostrar y a partir de ahí deducían los teoremas. En otros casos, como describe Arquímedes en El método, se halló primero la respuesta a determinada cuestión de interés y, a continuación, se averiguaba la demostración.
En general, los conceptos eran inventados. Como concepto, los números primos eran un invento, pero todos los teoremas acerca de números primos fueron descubiertos.[270] Los matemáticos de la antigua Babilonia, Egipto y China no inventaron nunca el concepto de número primo, a pesar del avanzado estado de su matemática. ¿Podríamos decir que simplemente no habían «descubierto» los números primos? No más de lo que podemos afirmar que el Reino Unido no «descubrió» una constitución única, codificada y documental. Del mismo modo que un país puede sobrevivir sin constitución, sin el concepto de número primo es posible desarrollar una matemática elaborada. ¡Y vaya si lo era!
¿Sabemos por qué los griegos inventaron conceptos como los axiomas y los números primos? Aunque no es posible afirmarlo con seguridad, podemos suponer que formaba parte de su incansable afán por investigar los constituyentes fundamentales del universo. Los números primos eran los bloques de construcción básicos de los números, del mismo modo que los «átomos» lo eran de la materia. De forma parecida, los axiomas eran la fuente de la que manaban, según se suponía, todas las verdades de la geometría. El dodecaedro representaba todo el cosmos, y la razón áurea era el concepto que otorgaba existencia a ese símbolo.
Este debate saca a relucir otro de los aspectos interesantes de la matemática: que ésta forma parte de la cultura humana. Una vez que los griegos inventaron el método axiomático, los matemáticos europeos que vinieron a continuación siguieron sus pasos y adoptaron la misma filosofía y las mismas prácticas. Como observó el antropólogo Leslie A. White (1900-1975): «Si Newton se hubiese criado dentro de la cultura de una tribu de Sudáfrica, hubiese calculado como un miembro de la tribu».[271] Lo más probable es que sea esta estructura cultural de la matemática la responsable de que muchos de los descubrimientos matemáticos (como los invariantes de nudos) e incluso algunos de los principales inventos (como el cálculo) los hiciesen de forma simultánea varias personas trabajando de modo independiente.

 ¿Habla matemática?

 

 

En una sección anterior he comparado la trascendencia del concepto abstracto de un número con el del significado de una palabra. La matemática ¿es un tipo de lenguaje? Desde el punto de vista de la lógica matemática, por un lado, y de la lingüística, por otro, parece que, hasta cierto punto, lo es. Las obras de Boole, Frege, Peano, Russell, Whitehead, Gödel y sus actuales seguidores (en especial en áreas tales como la sintaxis y la semántica filosóficas, en paralelo con la lingüística) han demostrado que la gramática y el razonamiento están íntimamente relacionados con el álgebra de la lógica simbólica. Entonces, ¿por qué hay más de 6.500 lenguas pero sólo una matemática?
En realidad, las distintas lenguas tienen numerosas características de diseño comunes. Por ejemplo, en la década de 1960, el lingüista norteamericano Charles F. Hockett (1916-2000) señaló que todas las lenguas tienen incorporados mecanismos para la adquisición de nuevas palabras y expresiones (por ejemplo, «ratón», «portátil», «música indie», etc.).[272] Del mismo modo, las lenguas humanas permiten expresar la abstracción (por ejemplo, surrealismo, ausencia o grandeza), la negación (como «no» o «ninguno») y la hipótesis («si la abuela hubiese tenido ruedas podría haber sido un autobús»).
Quizá dos de las características más importantes de las lenguas sean el hecho de que son abiertas y su libertad para responder a estímulos. La primera representa la capacidad para crear y comprender frases que nunca antes se han dicho.[273] Por ejemplo, yo podría crear con facilidad una frase como «No se puede reparar la presa de Hoover con chicle» y, aunque lo más probable es que nunca antes haya oído esa frase, la entenderá sin ningún problema. La libertad de respuesta a estímulos es la capacidad de elegir cómo responder a un estímulo recibido, o incluso si queremos responder. Por ejemplo, la respuesta a la pregunta de la cantautora Carole King en su canción Will You Still Love Me Tomorrow? podría ser cualquiera de éstas: «No sé si seguiré vivo mañana», «Por supuesto», «Ni siquiera te quiero hoy», «No tanto como a mi perro», «Esta es sin duda tu mejor canción» o incluso «Me pregunto quién ganará el Open de Australia este año». Muchas de estas características (abstracción, negación, apertura y capacidad de evolución) son también típicas de la matemática.[274]
Los lingüistas cognitivos señalan también que las lenguas humanas utilizan metáforas para expresar casi cualquier cosa. Y lo que es aún más importante: desde 1957, el año en que el célebre lingüista Noam Chomsky publicó su revolucionaria obra Syntactic Structures,[275] una gran parte de los esfuerzos de los lingüistas se han dedicado al concepto de gramática universal, es decir, los principios subyacentes a todas las lenguas. Dicho de otro modo, lo que parece una Torre de Babel de diversidad puede en realidad ocultar una sorprendente similitud estructural. De hecho, si no fuese así, probablemente los diccionarios nunca hubiesen servido para nada.
Es lícito seguir preguntándose por la uniformidad de la matemática, tanto en términos temáticos como de notación simbólica. La primera parte de esa pregunta es especialmente enigmática. Casi todos los matemáticos opinan que la matemática tal como la conocemos ha evolucionado a partir de las ramas básicas de la geometría y la aritmética practicadas en las antiguas civilizaciones de Babilonia, Egipto y Grecia. No obstante, ¿era realmente inevitable que los inicios de la matemática se hallasen precisamente en esas disciplinas? En su monumental trabajo Un nuevo tipo de ciencia, el científico computacional Stephen Wolfram sostenía que no tenía por qué ser así.[276] En concreto, Wolfram demostraba cómo, a partir de conjuntos de reglas básicas que actúan como breves programas informáticos (lo que se denomina autómatas celulares) es posible desarrollar un tipo de matemática radicalmente distinto. Estos autómatas celulares se podrían utilizar (en principio) como herramientas básicas para modelar los fenómenos naturales, en sustitución de las ecuaciones diferenciales que han dominado las ciencias durante tres siglos.
Entonces, ¿qué fue lo que hizo que las antiguas civilizaciones descubriesen e inventasen nuestro «tipo» determinado de matemática? No estoy seguro, pero creo que las particularidades del sistema de percepción de los seres humanos pueden haber tenido un papel fundamental en ello. Los humanos detectan y perciben con facilidad aristas, líneas rectas y curvas suaves. Obsérvese, por ejemplo, la precisión con la que se puede determinar a simple vista si una línea es perfectamente recta o el poco esfuerzo que cuesta distinguir entre un círculo y una forma ligeramente elíptica. Estas capacidades perceptivas pueden haber modelado nuestra experiencia del mundo y, por tanto, habernos guiado hacia una matemática basada en objetos discretos (aritmética) y figuras geométricas (geometría euclidiana).
En cuanto a la uniformidad de la notación simbólica, quizá sea un resultado de lo que se podría denominar «efecto Microsoft Windows»: todo el mundo utiliza el sistema operativo de Microsoft, no porque fuese inevitable conformarse a ese estándar, sino porque, una vez que el sistema operativo empezó a dominar el mercado de ordenadores, todos tuvieron que adoptarlo para facilitar las comunicaciones y la disponibilidad de los productos. De forma similar, la notación simbólica occidental ha impuesto su uniformidad en el mundo de la matemática.
La astronomía y la astrofísica pueden aún ofrecer interesantes contribuciones a la cuestión del «invento y descubrimiento». Los estudios más recientes de planetas extrasolares parecen indicar que alrededor del 5 por 100 de las estrellas poseen al menos un planeta girando a su alrededor, y que esta proporción permanece, en promedio, aproximadamente constante en toda la Vía Láctea. No se sabe aún qué proporción de estos planetas es similar a la Tierra, pero es posible que la galaxia contenga miles de millones de ellos. Aunque sólo una parte pequeña (pero no despreciable) de esas Tierras estuviesen en la zona habitable (el intervalo de órbitas que permiten la existencia de agua en estado líquido en la superficie) de sus estrellas, la probabilidad de que se desarrolle en esos planetas vida en general y, en particular, vida inteligente, no es nula. Si descubriésemos otra forma de vida inteligente con la que podernos comunicar, obtendríamos valiosísima información acerca de los formalismos que esta civilización habría desarrollado para explicar el cosmos. Esto supondría, no sólo un colosal avance en nuestra comprensión acerca del origen y la evolución de la vida, sino que nos permitiría comparar nuestro sistema lógico con el de estos avanzados seres.
Desde un punto de vista más especulativo, ciertos escenarios cosmológicos (por ejemplo, el denominado de inflación eterna) predicen la posible existencia de múltiples universos. Algunos de estos universos pueden caracterizarse por poseer no sólo valores distintos de las constantes de la naturaleza (como la intensidad de las distintas fuerzas o las relaciones entre las masas de las partículas subatómicas) sino incluso leyes naturales completamente distintas. El astrofísico Max Tegmark sostiene que incluso debería haber un universo que correspondiese a (o, en su lenguaje, que fuese) cada posible estructura matemática.[277] En tal caso, estaríamos hablando de una forma radical de la perspectiva «el universo es la matemática»; no sólo hay un mundo que se puede identificar con la matemática, sino un conjunto de ellos. Por desgracia, esta especulación no sólo es extremadamente radical e imposible de comprobar; también parece contradecir (al menos, en su forma más simple) lo que se ha dado en denominar principio de mediocridad.[278] Se puede aplicar un argumento similar a las propiedades de los universos. Pero el número de posibles estructuras matemáticas se incrementa de forma espectacular al aumentar la complejidad. Esto se traduce en que la estructura más «mediocre» (más cercana a la media) debería de ser increíblemente compleja, lo que parece contradecir la relativa simplicidad de nuestra matemática y de nuestras teorías del universo e incumplir así las naturales perspectivas de que nuestro universo debería de ser un caso típico.

 El enigma de Wigner

 

 

La pregunta «La matemática ¿es descubierta o inventada?» no está bien formulada, porque implica que la respuesta debe ser una o la otra y que ambas posibilidades se excluyen mutuamente. Mi sugerencia es que la matemática es en parte inventada y en parte descubierta. Lo habitual es que los seres humanos inventen los conceptos matemáticos y descubran las relaciones entre estos conceptos. Ciertos descubrimientos empíricos se efectuaron sin duda antes de la formulación de los conceptos, pero los propios conceptos ofrecieron un incentivo para el descubrimiento de teoremas adicionales. También se debe mencionar que ciertos filósofos de la matemática, como el norteamericano Hilary Putnam, adoptan una posición intermedia denominada realismo:[279] creen en la objetividad del discurso matemático (es decir, las frases son ciertas o falsas, y lo que hace que lo sean es externo a los seres humanos) sin comprometerse (a diferencia de los platónicos) con la existencia de «objetos matemáticos». La cuestión es la siguiente: ¿ofrece alguna de estas perspectivas una explicación satisfactoria del enigma de Wigner acerca de la «eficacia inexplicable» de la matemática?
Antes de responder, examinaré algunas de las posibles soluciones formuladas por algunos pensadores contemporáneos.[280] El premio Nobel de Física David Gross escribe:[281]
… un punto de vista que, según mi experiencia, no es inusual entre los matemáticos creativos, a saber, que las estructuras matemáticas que alcanzan no son creaciones de la mente humana, sino que están dotadas de una característica de naturaleza propia tan real como las estructuras creadas por los físicos para describir el mundo denominado real. Dicho de otra forma, los matemáticos no inventan nueva matemática, sino que la descubren. Si éste fuera el caso, quizá una parte de los enigmas que venimos explorando* [* La «eficacia inexplicable». (N. del a.)] no sean en realidad tan misteriosos. Si la matemática versa sobre estructuras que forman parte real del mundo natural, tan real como los conceptos de la física teórica, no es sorprendente que se trate de una herramienta eficaz en el análisis del mundo real.
Dicho de otro modo, la postura de Gross es una versión de la perspectiva «matemática como descubrimiento» que se halla en algún punto intermedio entre el mundo platónico y el mundo de «el universo es matemática» (aunque más próxima al punto de vista platónico). Sin embargo, como hemos podido ver, es complicado apoyar el punto de vista de «matemática como descubrimiento». Es más: el platonismo no puede dar respuesta a la fabulosa precisión que he descrito en el capítulo 8 (algo que el propio Gross ha reconocido).
Sir Michael Atiyah, cuya perspectiva acerca de la naturaleza de la matemática comparto en general, plantea el siguiente argumento:[282]
Si se observa el cerebro en su contexto evolutivo, el misterioso éxito de la matemática dentro de las ciencias físicas queda explicado, al menos parcialmente. El cerebro ha evolucionado para tratar con el mundo físico, de modo que no debería sorprendernos que haya desarrollado un lenguaje, la matemática, adecuado para esta finalidad.
Este tipo de razonamiento es muy similar a las soluciones propuestas por los científicos cognitivos. Sin embargo, Atiyah reconoce también que no se trata de una explicación satisfactoria para los aspectos más peliagudos del problema (por ejemplo, la forma en que la matemática arroja luz sobre los aspectos más esotéricos del mundo físico) y, en particular, deja completamente en el aire la cuestión de lo que he venido denominando eficacia pasiva (es decir, los conceptos matemáticos que hallan aplicación tiempo después de su invención). Señala Atiyah: «El escéptico puede argumentar que la lucha por la supervivencia sólo nos exige enfrentarnos a fenómenos en la escala humana; sin embargo, la teoría matemática parece ser eficaz en todas las escalas, de la atómica a la galáctica». A lo que sugiere: «Puede que la única explicación resida en la naturaleza jerárquica abstracta de la matemática, que nos permite subir y bajar en la escala del mundo de forma comparativamente sencilla».
El matemático y científico computacional norteamericano Richard Hamming (1915-1998) hizo extensas e interesantes aportaciones al debate del enigma de Wigner en 1980.[283] En primer lugar, acerca de la naturaleza de la matemática, su conclusión era: «La matemática ha sido fabricada por el hombre y es, por tanto, susceptible de ser continuamente alterada por él». A continuación proponía cuatro posibles respuestas para la eficacia inexplicable: (i) los efectos de selección; (ii) la evolución de las herramientas matemáticas; (iii) el poder de explicación limitado de la matemática, y (iv) la evolución del ser humano. Voy a explicar brevemente lo que Hamming quiere decir en cada una de estas respuestas y señalar los posibles puntos débiles.
Los efectos de selección son sesgos en los resultados de los experimentos, provocados por la instrumentación o por la metodología utilizadas. Por ejemplo, un pescador que utilice una red con agujeros de 25 centímetros de diámetro puede llegar a la conclusión de que todos los peces miden más de 25 centímetros. Dicho de otra forma, lo que Hamming sugiere es que, en ciertos casos, «el fenómeno original surge de las propias herramientas matemáticas utilizadas, y no del mundo real … una gran parte de lo que vemos está relacionado con el color del cristal con el que miramos». Para ilustrar su argumento indica que se puede mostrar que cualquier fuerza que emane simétricamente de un punto (y conserve la energía) en el espacio de tres dimensiones debe seguir una ley del cuadrado inverso, de modo que no es sorprendente que la ley de gravitación de Newton sea aplicable. Aunque el argumento de Hamming es correcto, los efectos de selección no son capaces de explicar el fantástico nivel de precisión de algunas teorías.
La segunda posible solución de Hamming se basa en el hecho de que los seres humanos seleccionan y mejoran de forma continua la matemática para que se adapte a situaciones concretas. En otras palabras, Hamming propone que estamos asistiendo a lo que podríamos llamar una «evolución y selección natural» de las ideas matemáticas: los humanos inventan un gran número de conceptos matemáticos y sólo se seleccionan los más aptos. Durante años yo mismo he creído que este argumento ofrecía una explicación completa. El premio Nobel de Física Steven Weinberg proponía una interpretación similar en su libro El sueño de una teoría final.[284] ¿Podría ser ésta la explicación del enigma de Wigner? No cabe la menor duda de que, en efecto, estos procesos de selección y evolución tienen lugar. Después de filtrar numerosos formalismos y herramientas matemáticas, los científicos conservan las que funcionan y las actualizan y modifican a medida que surgen otras mejores. Pero, aunque aceptemos esta idea, ¿por qué existen teorías matemáticas capaces de explicar el universo?
El tercer argumento de Hamming es que nuestra impresión de la eficacia de la matemática puede ser, de hecho, ilusoria, ya que una gran parte del mundo que nos rodea no puede explicarse mediante la matemática. Esta perspectiva toma fuerza, por ejemplo, en esta cita del matemático Israïl Moiseevich Gelfand:[285] «Sólo hay una cosa que sea más inexplicable que la inexplicable eficacia de la matemática en física, y es su inexplicable ineficacia en biología». (Las cursivas son mías). Pero no creo que esto baste para dar explicación al problema de Wigner. Es cierto que, a diferencia de lo que sucede en la Guía del autoestopista galáctico, no podemos decir que la respuesta a la vida, el universo y todo lo demás sea 42. Sin embargo, el número de fenómenos que la matemática ayuda a dilucidar es lo bastante grande como para justificar una explicación. Es más: la variedad de hechos y procesos que se pueden interpretar desde un punto de vista matemático no hace más que ampliarse continuamente.
Hamming tomó en consideración una posible cuarta explicación, muy similar a la que había sugerido Atiyah: que la «evolución darwiniana seleccionaría de forma natural para su supervivencia las formas de vida en competición que tuviesen en su mente los mejores modelos de la realidad», siendo «los mejores» los más aptos para la supervivencia y la propagación.
El científico computacional Jef Raskin (1943-2005), uno de los iniciadores del proyecto Macintosh para Apple Computer, tenía un punto de vista similar, con especial énfasis en la función de la lógica. Su conclusión era que:
La lógica humana nos ha sido impuesta por el mundo físico y es, por tanto, coherente con él. La matemática deriva de la lógica, y por ese motivo es coherente con el mundo físico. No es ningún misterio, pero eso no significa que debamos perder nuestra capacidad de sorprendernos y maravillarnos ante la naturaleza a medida que llegamos a comprenderla mejor.
Hamming, que no estaba tan convencido, a pesar de la solidez de sus propios argumentos, señaló que:
Si se toma como edad de la ciencia 4.000 años, se obtiene generalmente un límite superior de 200 generaciones. Considerando los efectos de la evolución mediante la selección de pequeñas variaciones aleatorias, no me parece que la evolución sea capaz de explicar más que una pequeña parte de la eficacia inexplicable de la matemática.
Raskin sostenía que «los fundamentos de la matemática se habían establecido mucho antes de la llegada de nuestros antepasados, probablemente a lo largo de millones de generaciones».[286] Pero debo decir que este argumento no me parece especialmente convincente. Aunque la lógica esté firmemente arraigada en los cerebros de nuestros antepasados, es difícil ver cómo este hecho puede haber conducido a la aparición de teorías matemáticas abstractas del mundo subatómico (como la mecánica cuántica o los formalismos conocidos como teorías «gauge») de fabulosa precisión.
Es sorprendente constatar que Hamming concluía su artículo admitiendo que «todas las explicaciones que he ofrecido, una vez unidas, no bastan para aclarar lo que pretendía» (la eficacia inexplicable de la matemática).
Entonces, ¿debemos concluir que esta eficacia sigue siendo igual de enigmática que al principio?
Antes de rendirnos, vamos a intentar llegar a la esencia del misterio de Wigner; para ello vamos a examinar lo que se denomina método científico.
En primer lugar, los científicos averiguan, a través de una serie de experimentos y observaciones, hechos acerca de la naturaleza. Estos hechos se utilizan inicialmente para desarrollar una especie de «modelos» cualitativos de los fenómenos (por ejemplo, la Tierra atrae las manzanas, la colisión de partículas subatómicas puede producir otras partículas, el universo se expande, etc.).
En muchas de las ramas de la ciencia, las teorías incipientes pueden incluso no ser matemáticas. Uno de los mejores ejemplos de una teoría de este tipo con una inmensa capacidad para explicar los fenómenos es la teoría de la evolución de Darwin. Aunque la selección natural no está basada en formalismo matemático alguno, es notable su éxito en la explicación del origen de las especies.
En física fundamental, por el contrario, el paso siguiente suele consistir en intentar construir teorías cuantitativas, matemáticas (por ejemplo, la relatividad general, la electrodinámica cuántica, la teoría de cuerdas, etc.). Finalmente, los investigadores utilizan esos modelos matemáticos para predecir nuevos fenómenos, nuevas partículas y resultados de experimentos y observaciones nunca realizados.
Lo que confundía a Wigner y a Einstein era la increíble precisión del resultado de estos dos últimos procesos. ¿Cómo es posible que, una y otra vez, los físicos puedan hallar herramientas matemáticas que no sólo expliquen los resultados experimentales y las observaciones anteriores, sino que lleven a descubrir nuevos criterios y efectuar nuevas predicciones?
Voy a intentar dar respuesta a esta versión de la pregunta a partir de un ejemplo del matemático Reuben Hersh. Hersh proponía que, en el espíritu del análisis de muchos de estos problemas de la matemática (y, desde luego, de la física teórica), se debía examinar el más simple de los casos posibles.[287] Pensemos en el experimento aparentemente trivial de introducir guijarros en un jarrón opaco. Supongamos que metemos primero cuatro guijarros blancos y luego siete guijarros negros. En algún momento de la historia, los humanos aprendieron que, en algunos casos, podían representar un grupo de guijarros de cualquier color mediante un concepto abstracto que habían inventado: un número natural. Es decir, el conjunto de guijarros blancos se podía asociar con el número 4 (o IIII, IV o cualquiera que fuese el símbolo utilizado en la época) y el de guijarros negros, con el número 7. A través de experimentos como el descrito, los seres humanos descubrieron que otro concepto inventado (la adición aritmética) representaba correctamente el acto físico de acumular. Dicho de otra forma, el resultado del proceso abstracto denotado simbólicamente por 4 + 7 puede predecir de forma no ambigua el número final de guijarros en el jarrón.
¿Qué significa todo esto? ¡Significa que los seres humanos han desarrollado una increíble herramienta matemática, capaz de predecir de forma fiable el resultado de cualquier experimento de este tipo! Esto puede parecer una trivialidad, pero no lo es, porque esta misma herramienta no sirve, por ejemplo, con gotas de agua. Si se vierten cuatro gotas de agua en el jarrón una a una y, a continuación, otras siete gotas, no se obtienen once gotas de agua independientes. De hecho, para poder efectuar predicciones en experimentos similares con líquidos o gases, los seres humanos tuvieron que inventar conceptos completamente distintos (como el de peso) y darse cuenta de que era necesario pesar cada gota de agua o volumen de gas de forma individual.
La conclusión es clara: las herramientas matemáticas no se han elegido de forma arbitraria, sino precisamente por su capacidad para predecir de forma correcta los resultados de los experimentos u observaciones pertinentes. De manera que, al menos en este caso tan simple, su eficacia estaba garantizada. Los seres humanos no tuvieron que adivinar a priori cuáles eran las matemáticas correctas: la Naturaleza tuvo la gentileza de permitirles utilizar el ensayo y error para determinar qué era lo que funcionaba. Tampoco tenían que utilizar obligatoriamente las mismas herramientas para todas las circunstancias. A veces, el formalismo matemático apropiado para determinado problema no existía y alguien tuvo que inventarlo (es el caso de Newton y su invención del cálculo, o de las diversas ideas en geometría y topología surgidas en el contexto de los actuales estudios en teoría de cuerdas). En otros casos, el formalismo ya existía, pero era necesario descubrir que se trataba de una solución en espera del problema adecuado (como en el caso del uso de la geometría de Riemann por Einstein, o de la teoría de grupos en física de partículas). La cuestión es que su extraordinaria curiosidad, su perseverancia, su imaginación creativa y su intensa determinación han permitido a los seres humanos hallar los formalismos matemáticos relevantes para crear modelos de un gran número de fenómenos físicos.
Una de las características de la matemática que ha resultado esencial para lo que he venido denominando su eficacia «pasiva» ha sido su validez esencialmente eterna. La geometría euclidiana sigue siendo tan correcta en la actualidad como lo era en el año 300 a.C. Ahora comprendemos por qué sus axiomas no son inevitables y, en lugar de representar verdades absolutas acerca del espacio, representan verdades dentro del universo particular que los seres humanos percibimos y de su formalismo asociado. Sin embargo, una vez que hemos comprendido que su contexto es más limitado, todos sus teoremas siguen siendo ciertos. Dicho de otro modo, las distintas ramas de la matemática se incorporan a ramas más amplias (por ejemplo, la geometría euclidiana es sólo una de las posibles versiones de la geometría), pero la corrección se conserva dentro de cada rama. Esta longevidad indefinida ha permitido que los científicos de cada época buscasen las herramientas adecuadas dentro del arsenal de formalismos desarrollados.
De todos modos, el ejemplo sencillo de los guijarros en el jarrón deja en el aire dos de los elementos del enigma de Wigner. En primer lugar se halla la siguiente cuestión: ¿por qué en algunos casos parece que, en términos de exactitud, obtenemos de la teoría más de lo que hemos puesto? En el experimento de los guijarros, la exactitud de los resultados «predichos» (la acumulación de otros conjuntos de guijarros) no es mejor que la exactitud de los experimentos que condujeron a la formulación inicial de la teoría (la adición aritmética). Por otro lado, se ha demostrado que la exactitud de las predicciones de la teoría de la gravitación de Newton supera en gran medida la de los resultados observacionales que motivaron la formulación de la teoría. ¿Por qué? Vamos a recapitular brevemente sobre la historia de la teoría de Newton.
El modelo geocéntrico de Ptolomeo fue el dominante durante unos quince siglos. Aunque el modelo no pretendía ser universal (el movimiento de cada planeta se trataba de forma individual) y no mencionaba nada acerca de causas físicas (como fuerzas o aceleraciones), se ajustaba razonablemente a las observaciones. Nicolaus Copernicus (1473-1543) publicó su modelo heliocéntrico en 1543, y Galileo le proporcionó una base sólida. Galileo estableció también los fundamentos de las leyes del movimiento. Pero fue Kepler quien dedujo las primeras leyes matemáticas (aunque sólo fenomenológicas) del movimiento planetario a partir de observaciones.
Kepler utilizó una colosal cantidad de datos recopilados por el astrónomo Tycho Brahe (1546-1601) para determinar la órbita de Marte.[288] A los centenares de páginas de cálculos que tuvo que llevar a cabo los denominó «mi guerra personal con Marte». Salvo por un par de discrepancias, las observaciones se ajustaban a una órbita circular. Sin embargo, Kepler no quedó satisfecho con esta solución, y más adelante describió así sus cavilaciones: «Si hubiese pensado que podía hacer caso omiso de esos ocho minutos [de arco, alrededor de una cuarta parte del diámetro de la luna llena], hubiese modificado mis hipótesis … en consecuencia. Pero no era aceptable ignorarlos, de modo que esos ocho minutos señalaron el camino de una reforma total de la astronomía». Las consecuencias de esta meticulosidad fueron fenomenales. Kepler dedujo que las órbitas de los planetas no son circulares, sino elípticas, y formuló dos leyes cuantitativas adicionales que podían aplicarse a todos los planetas. Unidas a las leyes de movimiento de Newton, se convirtieron en la base para la ley de la gravitación universal. Recordemos, no obstante, que Descartes había propuesto antes su teoría de los vórtices, en la que los planetas eran transportados alrededor del Sol por vórtices de partículas en movimiento circular. Esta teoría no tuvo demasiado predicamento, ni siquiera antes de que Newton demostrase que era incoherente, porque Descartes no había desarrollado un tratamiento sistemático de los vórtices.
¿Qué lección podemos extraer de esta breve historia? No cabe duda de que la ley de la gravitación de Newton fue la obra de un genio. ¡Pero este genio no se encontraba aislado en el vacío! Una parte de los cimientos habían sido establecidos anteriormente con gran meticulosidad por otros científicos. Como ya señalé en el capítulo 4, matemáticos de un nivel mucho menor que el de Newton, como el arquitecto Christopher Wren y el físico Robert Hooke, habían sugerido de forma independiente la ley de atracción del cuadrado inverso. La grandeza de Newton consistió en su capacidad única para ligarlo todo en forma de una teoría unificada y su terquedad para hallar demostraciones matemáticas de las consecuencias de su teoría. Podemos preguntarnos por qué este formalismo resultó ser tan preciso. En parte se debió a que trataba el problema más fundamental: las fuerzas entre dos cuerpos graves y el movimiento resultante, sin otros factores que complicasen el escenario. Newton sólo obtuvo una solución completa para este problema. Así, la teoría fundamental era extraordinariamente precisa, pero sus implicaciones tuvieron que sufrir una continua corrección.
El sistema solar se compone de más de dos cuerpos. Cuando se incluyen los efectos de otros planetas (siguiendo igualmente la ley del cuadrado inverso), las órbitas dejan de ser simples elipses. Por ejemplo, se ha hallado que la órbita de la Tierra cambia lentamente su orientación en el espacio (un movimiento denominado precesión), algo parecido a lo que sucede con el eje de una peonza en rotación. De hecho, los estudios más modernos han mostrado que, en contradicción con las expectativas de Laplace, es posible que las órbitas de los planetas acaben convirtiéndose en caóticas.[289] La propia teoría fundamental de Newton fue, desde luego, destronada por la relatividad general de Einstein, y esa misma teoría apareció después de una serie de salidas en falso y de «casi» dianas. Esto demuestra que no es posible prever la exactitud. Para probar el pastel es necesario comérselo: hasta obtener la precisión deseada, se efectúan todas las correcciones y modificaciones necesarias. Los casos en los que se logra una exactitud superior en un solo paso parecen milagros.
En segundo plano tenemos, parece claro, un hecho esencial que hace que la búsqueda de leyes fundamentales valga la pena. Se trata del hecho de que la naturaleza ha sido tan amable de obedecer leyes universales, en lugar de simples normas locales. Un átomo de hidrógeno se comporta exactamente del mismo modo en la Tierra, en el otro extremo de la Vía Láctea o en una galaxia a diez mil millones de años luz de distancia. Y esto se cumple en todas las direcciones y momentos.
Los matemáticos y físicos han inventado un término para referirse a estas propiedades: se denominan simetrías, y dan cuenta de la inmunidad a los cambios en la ubicación, en la orientación o el momento en que se pone en marcha el reloj. Si no fuese por estas (y otras) simetrías, la esperanza de descifrar algún día el gran plan de la naturaleza se hubiese perdido, porque los experimentos deberían haberse repetido en todos los lugares del espacio (si es que hubiese sido posible la aparición de la vida en un universo así). Otra de las propiedades del cosmos que subyace tras las teorías matemáticas es lo que se ha venido en llamar localidad. Esta propiedad refleja nuestra capacidad para construir la «imagen global» como si fuese un rompecabezas, empezando por una descripción de las interacciones más básicas entre partículas elementales.
Y ahora llegamos al último elemento del enigma de Wigner: ¿qué es lo que garantiza que deba existir siquiera una teoría matemática? En otras palabras: ¿por qué existe, por ejemplo, una teoría de la relatividad general? ¿Podría ser que no existiese una teoría matemática de la gravedad?
La respuesta, en realidad, es más simple de lo que podría parecer.[290] ¡No hay garantía alguna! Hay multitud de fenómenos para los que ni siquiera en principio es posible efectuar predicciones precisas. En esta categoría se hallan, por ejemplo, una amplia gama de sistemas dinámicos que desarrollan comportamientos caóticos, en los que un cambio nimio en las condiciones iniciales puede provocar resultados finales completamente distintos. Entre los fenómenos con este tipo de comportamientos se encuentran el mercado de valores, el tiempo atmosférico sobre las Montañas Rocosas, una bola rebotando en una ruleta, el humo que sale de un cigarrillo y, por supuesto, las órbitas de los planetas en el sistema solar. Esto no significa que los matemáticos no hayan desarrollado formalismos ingeniosos para tratar aspectos importantes de estos problemas, pero no existe una teoría determinista predictiva para ellos.
Los campos de la probabilidad y la estadística se han creado precisamente para abordar las cuestiones en las que no se dispone de una teoría que permita obtener resultados más allá de las observaciones. De forma similar, el concepto denominado complejidad computacional delimita nuestra capacidad para resolver problemas mediante algoritmos prácticos, y los teoremas de incompletitud de Gödel determinan ciertas limitaciones dentro de la propia matemática. Así, aunque la matemática es extremadamente eficaz para ciertas descripciones, en especial las que tienen que ver con la ciencia, es incapaz de describir nuestro universo en todas sus dimensiones. Hasta cierto punto, los científicos han seleccionado los problemas en los que trabajan basándose en cuáles pueden recibir un tratamiento matemático.
Entonces, ¿hemos resuelto definitivamente el misterio de la inexplicable eficacia de la matemática? Dudo mucho que los argumentos que he expuesto en este libro hayan dejado completamente convencidas a todas las personas. Sin embargo, puedo citar a Bertrand Russell en Los problemas de la filosofía:[291]
Para resumir nuestro análisis sobre el valor de la filosofía: la filosofía debe ser estudiada, no por las respuestas concretas a los problemas que plantea, puesto que, por lo general, ninguna respuesta precisa puede ser garantizada como verdadera, sino más bien por el valor de los problemas mismos; porque estos problemas amplían nuestra concepción de lo posible, enriquecen nuestra imaginación intelectual y disminuyen la seguridad dogmática que cierra el espíritu a la investigación; pero, ante todo, porque por la grandeza del Universo que la filosofía contempla, el espíritu se hace a su vez grande, y llega a ser capaz de la unión con el Universo que constituye su supremo bien.
[254] Davis y Hersh 1981. <<
[255] Hardy l940. <<
[256] Kasner y Newman 1989. <<
[257] Barrow 1992 incluye una de las mejores explicaciones divulgativas sobre la naturaleza de la matemática. Un repaso un poco más técnico, pero accesible, de algunas de las principales ideas se halla en Kline 1992. <<
[258] Véase Barrow 1992 para otro excelente comentario de muchos de los temas de este libro. <<
[259] Tegmark 2007a,b. <<
[260] Changeux y Connes 1995. <<
[261] Dehaene 1997. <<
[262] Dehaene et al 2006. <<
[263] Véase por ejemplo Holden 2006. <<
[264] Changeux y Connes 1995. <<
[265] Lakoff y Núñez 2000. <<
[266] Véase por ejemplo Ramachandran y Biakeslee 1999. <<
[267] Varley et al 2005; Klessinger et al 2007. <<
[268] Atiyah 1995. <<
[269] Para una descripción en detalle de la razón áurea, su historia y sus propiedades, véase Livio 2002 y también Herz-Fischler 1998. <<
[270] Hersh 2000 contiene un artículo de Yehuda Rav con un comentario acerca de estas ideas. <<
[271] White 1947. <<
[272] Para una descripción de nivel divulgativo véase Hockett 1960. <<
[273] Véase Obler y Gjerlow 1999 para un ameno comentario acerca del lenguaje y el cerebro. <<
[274] Las similitudes entre el lenguaje y la matemática se tratan también en Sanukai 2005 y Atiyah 1994. <<
[275] Chomsky 1957. Para más información sobre lingüística, Aronoff y Rees-Miller 2001 incluye un excelente resumen. Una interesante perspectiva de nivel divulgativo es Pinker 1994. <<
[276] Wolfram 2002. Para un excelente comentario sobre este asunto véase Vilenkin 2006. <<
[277] Tegmark identificó cuatro tipos distintos de universos paralelos. En el «Nivel I» hay universos con las mismas leyes de la física pero condiciones iniciales distintas. En el «Nivel II» hay universos con las mismas ecuaciones físicas pero quizá con restricciones naturales diferentes. El «Nivel III» utiliza la interpretación de los «muchos mundos» de la mecánica cuántica, y en el «Nivel IV» hay estructuras matemáticas distintas. Tegmark 2003. <<
[278] Como describí en el capítulo 5, si se elige una persona al azar en la calle, la probabilidad de que su altura se encuentre dentro de dos desviaciones estándar de la altura media es del 95 por 100. <<
[279] Putnam 1975. <<
[280] Hay otras opiniones que no he comentado. Por ejemplo, Steiner (2005) argumenta que Wigner no prueba que sus ejemplos de la «eficacia inexplicable» tengan relación alguna con el hecho de que los conceptos sean matemáticos. <<
[281] Gross 1988. Para un comentario más amplio acerca de la relación entre la matemática y la física, véase Vafa 2000. <<
[282] Atiyah 1995, y véase también Atiyah 1993. <<
[283] Hamming 1980. <<
[284] Weinberg 1993. <<
[285] En Borovik 2006. <<
[286] Raskin 1998. <<
[287] Hersh 2000 contiene excelentes artículos escritos por Hersh. <<
[288] Los propios libros escritos por Kepler, Kepler 1981 y 1997, son una interesante lectura para los interesados en la historia de la ciencia. Excelentes biografías son Caspar 1993 y Gingerich 1973. <<
[289] Para una revisión véase, por ejemplo, Lecar et al. 2001. <<
[290] Raymond 2005 contiene una interesante explicación sobre la utilidad de la matemática. Certeros puntos de vista sobre el enigma de Wigner se pueden también hallar en Wilczek 2006, 2007. <<
[291] Russell 1997. << 

No hay comentarios: